
Previous Article
Hodge decomposition for symmetric matrix fields and the elasticity complex in Lipschitz domains
 CPAA Home
 This Issue

Next Article
Analysis of a bone remodeling model
Inelastic Collapse in a Corner
1.  Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, Hong Kong 
2.  Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China 
[1] 
WolfJürgen Beyn, Thorsten Hüls. Continuation and collapse of homoclinic tangles. Journal of Computational Dynamics, 2014, 1 (1) : 71109. doi: 10.3934/jcd.2014.1.71 
[2] 
ChangYeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems  A, 2009, 23 (1&2) : 315339. doi: 10.3934/dcds.2009.23.315 
[3] 
N. D. Alikakos, P. W. Bates, J. W. Cahn, P. C. Fife, G. Fusco, G. B. Tanoglu. Analysis of a corner layer problem in anisotropic interfaces. Discrete & Continuous Dynamical Systems  B, 2006, 6 (2) : 237255. doi: 10.3934/dcdsb.2006.6.237 
[4] 
Christopher M. KribsZaleta, Christopher Mitchell. Modeling colony collapse disorder in honeybees as a contagion. Mathematical Biosciences & Engineering, 2014, 11 (6) : 12751294. doi: 10.3934/mbe.2014.11.1275 
[5] 
Yvan Martel, Frank Merle. Inelastic interaction of nearly equal solitons for the BBM equation. Discrete & Continuous Dynamical Systems  A, 2010, 27 (2) : 487532. doi: 10.3934/dcds.2010.27.487 
[6] 
Ralf Kirsch, Sergej Rjasanow. The uniformly heated inelastic Boltzmann equation in Fourier space. Kinetic & Related Models, 2010, 3 (3) : 445456. doi: 10.3934/krm.2010.3.445 
[7] 
Zhongyi Huang, Peter A. Markowich, Christof Sparber. Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics. Kinetic & Related Models, 2010, 3 (1) : 181194. doi: 10.3934/krm.2010.3.181 
[8] 
José A. Carrillo, Stéphane Cordier, Giuseppe Toscani. Overpopulated tails for conservativeinthemean inelastic Maxwell models. Discrete & Continuous Dynamical Systems  A, 2009, 24 (1) : 5981. doi: 10.3934/dcds.2009.24.59 
[9] 
Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rateindependent model for permanent inelastic effects in shape memory materials. Networks & Heterogeneous Media, 2011, 6 (1) : 145165. doi: 10.3934/nhm.2011.6.145 
[10] 
Shi Jin, Dongsheng Yin. Computational high frequency wave diffraction by a corner via the Liouville equation and geometric theory of diffraction. Kinetic & Related Models, 2011, 4 (1) : 295316. doi: 10.3934/krm.2011.4.295 
[11] 
Elio E. Espejo, Masaki Kurokiba, Takashi Suzuki. Blowup threshold and collapse mass separation for a driftdiffusion system in spacedimension two. Communications on Pure & Applied Analysis, 2013, 12 (6) : 26272644. doi: 10.3934/cpaa.2013.12.2627 
[12] 
Mei Ming. Weighted elliptic estimates for a mixed boundary system related to the DirichletNeumann operator on a corner domain. Discrete & Continuous Dynamical Systems  A, 2019, 39 (10) : 60396067. doi: 10.3934/dcds.2019264 
[13] 
Bertrand Lods, Clément Mouhot, Giuseppe Toscani. Relaxation rate, diffusion approximation and Fick's law for inelastic scattering Boltzmann models. Kinetic & Related Models, 2008, 1 (2) : 223248. doi: 10.3934/krm.2008.1.223 
[14] 
Michela Eleuteri, Luca Lussardi. Thermal control of a rateindependent model for permanent inelastic effects in shape memory materials. Evolution Equations & Control Theory, 2014, 3 (3) : 411427. doi: 10.3934/eect.2014.3.411 
[15] 
Anton Trushechkin. Microscopic and solitonlike solutions of the BoltzmannEnskog and generalized Enskog equations for elastic and inelastic hard spheres. Kinetic & Related Models, 2014, 7 (4) : 755778. doi: 10.3934/krm.2014.7.755 
[16] 
Shaofei Wu, Mingqing Wang, Maozhu Jin, Yuntao Zou, Lijun Song. Uniform $L^1$ stability of the inelastic Boltzmann equation with large external force for hard potentials. Discrete & Continuous Dynamical Systems  S, 2019, 12 (4&5) : 10051013. doi: 10.3934/dcdss.2019068 
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]