- Previous Article
- CPAA Home
- This Issue
-
Next Article
Identification of the class of initial data for the insensitizing control of the heat equation
Exterior Problem of Boltzmann Equation with Temperature Difference
1. | 17-26 Iwasaki, Hodogaya, Yokohama 240-0015 |
2. | Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong |
3. | School of Mathematics and Statistics, Wuhan University, Wuhan 430072 |
[1] |
Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495 |
[2] |
Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic and Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673 |
[3] |
Miguel Escobedo, Minh-Binh Tran. Convergence to equilibrium of a linearized quantum Boltzmann equation for bosons at very low temperature. Kinetic and Related Models, 2015, 8 (3) : 493-531. doi: 10.3934/krm.2015.8.493 |
[4] |
Shuyu Gong, Ziwei Zhou, Jiguang Bao. Existence and uniqueness of viscosity solutions to the exterior problem of a parabolic Monge-Ampère equation. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4921-4936. doi: 10.3934/cpaa.2020218 |
[5] |
Peng Chen, Xiaochun Liu. Positive solutions for Choquard equation in exterior domains. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2237-2256. doi: 10.3934/cpaa.2021065 |
[6] |
Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385 |
[7] |
Kazuhiro Ishige, Michinori Ishiwata. Global solutions for a semilinear heat equation in the exterior domain of a compact set. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 847-865. doi: 10.3934/dcds.2012.32.847 |
[8] |
Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37 |
[9] |
César E. Torres Ledesma. Existence of positive solutions for a class of fractional Choquard equation in exterior domain. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3301-3328. doi: 10.3934/dcds.2022016 |
[10] |
Seiji Ukai. Time-periodic solutions of the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 579-596. doi: 10.3934/dcds.2006.14.579 |
[11] |
Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Bounded solutions of the Boltzmann equation in the whole space. Kinetic and Related Models, 2011, 4 (1) : 17-40. doi: 10.3934/krm.2011.4.17 |
[12] |
Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic and Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801 |
[13] |
Juhi Jang, Ning Jiang. Acoustic limit of the Boltzmann equation: Classical solutions. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 869-882. doi: 10.3934/dcds.2009.25.869 |
[14] |
Thomas Carty. Grossly determined solutions for a Boltzmann-like equation. Kinetic and Related Models, 2017, 10 (4) : 957-976. doi: 10.3934/krm.2017038 |
[15] |
Hongjun Yu. Global classical solutions to the Boltzmann equation with external force. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1647-1668. doi: 10.3934/cpaa.2009.8.1647 |
[16] |
Hao Tang, Zhengrong Liu. On the Cauchy problem for the Boltzmann equation in Chemin-Lerner type spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2229-2256. doi: 10.3934/dcds.2016.36.2229 |
[17] |
Byung-Hoon Hwang, Seok-Bae Yun. Stationary solutions to the boundary value problem for the relativistic BGK model in a slab. Kinetic and Related Models, 2019, 12 (4) : 749-764. doi: 10.3934/krm.2019029 |
[18] |
Zejia Wang, Suzhen Xu, Huijuan Song. Stationary solutions of a free boundary problem modeling growth of angiogenesis tumor with inhibitor. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2593-2605. doi: 10.3934/dcdsb.2018129 |
[19] |
Houda Hani, Moez Khenissi. Asymptotic behaviors of solutions for finite difference analogue of the Chipot-Weissler equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1421-1445. doi: 10.3934/dcdss.2016057 |
[20] |
Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]