January  2009, 8(1): 473-491. doi: 10.3934/cpaa.2009.8.473

Exterior Problem of Boltzmann Equation with Temperature Difference

1. 

17-26 Iwasaki, Hodogaya, Yokohama 240-0015

2. 

Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong

3. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072

Received  February 2008 Revised  July 2008 Published  October 2008

The existence of stationary solution to an exterior domain of the Boltzmann equation was first studied by S. Ukai and K. Asano in [25, 27] and was recently generalized by S. Ukai, T. Yang, and H. J. Zhao in [29] to more general boundary conditions. We note, however, that the results obtained in [25, 29] require that the temperature of the far field Maxwellian is the same as the one of the Maxwellian preserved by the boundary conditions. The main purpose of this paper is to discuss the case when these two temperatures are different. The analysis is based on some new estimates on the linearized collision operator and the method introduced in [25, 27, 29].
Citation: Seiji Ukai, Tong Yang, Huijiang Zhao. Exterior Problem of Boltzmann Equation with Temperature Difference. Communications on Pure and Applied Analysis, 2009, 8 (1) : 473-491. doi: 10.3934/cpaa.2009.8.473
[1]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[2]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic and Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673

[3]

Miguel Escobedo, Minh-Binh Tran. Convergence to equilibrium of a linearized quantum Boltzmann equation for bosons at very low temperature. Kinetic and Related Models, 2015, 8 (3) : 493-531. doi: 10.3934/krm.2015.8.493

[4]

Shuyu Gong, Ziwei Zhou, Jiguang Bao. Existence and uniqueness of viscosity solutions to the exterior problem of a parabolic Monge-Ampère equation. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4921-4936. doi: 10.3934/cpaa.2020218

[5]

Peng Chen, Xiaochun Liu. Positive solutions for Choquard equation in exterior domains. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2237-2256. doi: 10.3934/cpaa.2021065

[6]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[7]

Kazuhiro Ishige, Michinori Ishiwata. Global solutions for a semilinear heat equation in the exterior domain of a compact set. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 847-865. doi: 10.3934/dcds.2012.32.847

[8]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[9]

César E. Torres Ledesma. Existence of positive solutions for a class of fractional Choquard equation in exterior domain. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3301-3328. doi: 10.3934/dcds.2022016

[10]

Seiji Ukai. Time-periodic solutions of the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 579-596. doi: 10.3934/dcds.2006.14.579

[11]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Bounded solutions of the Boltzmann equation in the whole space. Kinetic and Related Models, 2011, 4 (1) : 17-40. doi: 10.3934/krm.2011.4.17

[12]

Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic and Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801

[13]

Juhi Jang, Ning Jiang. Acoustic limit of the Boltzmann equation: Classical solutions. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 869-882. doi: 10.3934/dcds.2009.25.869

[14]

Thomas Carty. Grossly determined solutions for a Boltzmann-like equation. Kinetic and Related Models, 2017, 10 (4) : 957-976. doi: 10.3934/krm.2017038

[15]

Hongjun Yu. Global classical solutions to the Boltzmann equation with external force. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1647-1668. doi: 10.3934/cpaa.2009.8.1647

[16]

Hao Tang, Zhengrong Liu. On the Cauchy problem for the Boltzmann equation in Chemin-Lerner type spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2229-2256. doi: 10.3934/dcds.2016.36.2229

[17]

Byung-Hoon Hwang, Seok-Bae Yun. Stationary solutions to the boundary value problem for the relativistic BGK model in a slab. Kinetic and Related Models, 2019, 12 (4) : 749-764. doi: 10.3934/krm.2019029

[18]

Zejia Wang, Suzhen Xu, Huijuan Song. Stationary solutions of a free boundary problem modeling growth of angiogenesis tumor with inhibitor. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2593-2605. doi: 10.3934/dcdsb.2018129

[19]

Houda Hani, Moez Khenissi. Asymptotic behaviors of solutions for finite difference analogue of the Chipot-Weissler equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1421-1445. doi: 10.3934/dcdss.2016057

[20]

Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (136)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]