\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Boundedness and blowup solutions for quasilinear parabolic systems with lower order terms

Abstract / Introduction Related Papers Cited by
  • This paper deals with the bounded and blowup solutions of the quasilinear parabolic system $u_t = u^p ( \Delta u + a v) + f(u, v, Du, x)$ and $v_t = v^q ( \Delta v + b u) + g(u, v, Dv, x)$ with homogeneous Dirichlet boundary condition. Under suitable conditions on the lower order terms $f$ and $g$, it is shown that all solutions are bounded if $(1+c_1) \sqrt{ab} < \l_1$ and blow up in a finite time if $(1+c_1) \sqrt{ab} > \lambda_1$, where $\lambda_1$ is the first eigenvalue of $-\Delta $ in $\Omega$ with Dirichlet data and $c_1 > -1$ related to $f$ and $g$.
    Mathematics Subject Classification: Primary: 35K57, 35B40; Secondary: 35J55.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(70) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return