
Previous Article
Blowup rate estimate for a system of semilinear parabolic equations
 CPAA Home
 This Issue

Next Article
Inequalities and the AubryMather theory of HamiltonJacobi equations
On the asymptotic behavior of the Caginalp system with dynamic boundary conditions
1.  Department of Mathematics, University of Missouri, Columbia, MO, 65211, United States 
2.  Dipartimento di Matematica "F. Brioschi", Politecnico di Milano, I20133 Milano 
[1] 
Yoshitsugu Kabeya. Eigenvalues of the LaplaceBeltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems  A, 2020, 40 (6) : 35293559. doi: 10.3934/dcds.2020040 
[2] 
Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional KelvinVoigt fluids with "fading memory". Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020105 
[3] 
Fang Li, Bo You. On the dimension of global attractor for the CahnHilliardBrinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021024 
[4] 
Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems  S, 2021 doi: 10.3934/dcdss.2021004 
[5] 
Yanhong Zhang. Global attractors of two layer baroclinic quasigeostrophic model. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021023 
[6] 
Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems  S, 2021, 14 (2) : 653676. doi: 10.3934/dcdss.2020353 
[7] 
Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reactiondiffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems  B, 2021, 26 (3) : 13051335. doi: 10.3934/dcdsb.2020164 
[8] 
XinGuang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D BrinkmanForchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 13951418. doi: 10.3934/era.2020074 
[9] 
Leanne Dong. Random attractors for stochastic NavierStokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020352 
[10] 
Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems  A, 2021 doi: 10.3934/dcds.2021009 
[11] 
Mengni Li. Global regularity for a class of MongeAmpère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301317. doi: 10.3934/cpaa.2020267 
[12] 
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : . doi: 10.3934/cpaa.2021001 
[13] 
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 277296. doi: 10.3934/dcds.2020138 
[14] 
Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHughNagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems  B, 2021, 26 (3) : 15491563. doi: 10.3934/dcdsb.2020172 
[15] 
Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the nonautonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021018 
[16] 
Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the selfconsistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99115. doi: 10.3934/naco.2020018 
[17] 
Liupeng Wang, Yunqing Huang. Error estimates for secondorder SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 17351752. doi: 10.3934/era.2020089 
[18] 
Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic nonautonomous KuramotoSivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 15291544. doi: 10.3934/era.2020080 
[19] 
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D NavierStokesVoigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 123. doi: 10.3934/eect.2020039 
[20] 
Guillaume Cantin, M. A. AzizAlaoui. Dimension estimate of attractors for complex networks of reactiondiffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : . doi: 10.3934/cpaa.2020283 
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]