
Previous Article
A NonSelfAdjoint Quadratic Eigenvalue Problem Describing a FluidSolid Interaction Part I: Formulation, Analysis, and Computations
 CPAA Home
 This Issue

Next Article
On diagonal elliptic and parabolic systems with superquadratic Hamiltonians
Reduced symmetry elements in linear elasticity
1.  Dipartimento di Matematica, CeSNA and Università di Pavia, Via Ferrata 5, 27100 Pavia, Italy 
2.  CeSNA, IUSS, IMATICNR, Via Ferrata 5, 27100, Pavia, Italy 
3.  GIREF, Université Laval, Canada 
[1] 
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensorvalued spring constant derived from P1FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617634. doi: 10.3934/nhm.2014.9.617 
[2] 
Annie Raoult. Symmetry groups in nonlinear elasticity: an exercise in vintage mathematics. Communications on Pure & Applied Analysis, 2009, 8 (1) : 435456. doi: 10.3934/cpaa.2009.8.435 
[3] 
Bernd Schmidt. On the derivation of linear elasticity from atomistic models. Networks & Heterogeneous Media, 2009, 4 (4) : 789812. doi: 10.3934/nhm.2009.4.789 
[4] 
Cornel Marius Murea, Dan Tiba. Topological optimization and minimal compliance in linear elasticity. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020043 
[5] 
Eliane Bécache, Laurent Bourgeois, Lucas Franceschini, Jérémi Dardé. Application of mixed formulations of quasireversibility to solve illposed problems for heat and wave equations: The 1D case. Inverse Problems & Imaging, 2015, 9 (4) : 9711002. doi: 10.3934/ipi.2015.9.971 
[6] 
Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming formulations of deterministic infinite horizon optimal control problems in discrete time. Discrete & Continuous Dynamical Systems  B, 2017, 22 (10) : 38213838. doi: 10.3934/dcdsb.2017192 
[7] 
Mark S. Gockenbach, Akhtar A. Khan. Identification of Lamé parameters in linear elasticity: a fixed point approach. Journal of Industrial & Management Optimization, 2005, 1 (4) : 487497. doi: 10.3934/jimo.2005.1.487 
[8] 
Zhangxin Chen, Qiaoyuan Jiang, Yanli Cui. Lockingfree nonconforming finite elements for planar linear elasticity. Conference Publications, 2005, 2005 (Special) : 181189. doi: 10.3934/proc.2005.2005.181 
[9] 
Dmitry V. Zenkov. Linear conservation laws of nonholonomic systems with symmetry. Conference Publications, 2003, 2003 (Special) : 967976. doi: 10.3934/proc.2003.2003.967 
[10] 
Claudio Meneses. Linear phase space deformations with angular momentum symmetry. Journal of Geometric Mechanics, 2019, 11 (1) : 4558. doi: 10.3934/jgm.2019003 
[11] 
Qinghong Zhang, Gang Chen, Ting Zhang. Duality formulations in semidefinite programming. Journal of Industrial & Management Optimization, 2010, 6 (4) : 881893. doi: 10.3934/jimo.2010.6.881 
[12] 
Lingling Lv, Wei He, Xianxing Liu, Zhang Lei. A robust reducedorder observers design approach for linear discrete periodic systems. Journal of Industrial & Management Optimization, 2019 doi: 10.3934/jimo.2019081 
[13] 
Pedro Freitas. The linear damped wave equation, Hamiltonian symmetry, and the importance of being odd. Discrete & Continuous Dynamical Systems  A, 1998, 4 (4) : 635640. doi: 10.3934/dcds.1998.4.635 
[14] 
Sebastian Reich, Seoleun Shin. On the consistency of ensemble transform filter formulations. Journal of Computational Dynamics, 2014, 1 (1) : 177189. doi: 10.3934/jcd.2014.1.177 
[15] 
Alain Bensoussan, Shaokuan Chen, Suresh P. Sethi. Linear quadratic differential games with mixed leadership: The openloop solution. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 95108. doi: 10.3934/naco.2013.3.95 
[16] 
Santiago Montaner, Arnaud Münch. Approximation of controls for linear wave equations: A first order mixed formulation. Mathematical Control & Related Fields, 2019, 9 (4) : 729758. doi: 10.3934/mcrf.2019030 
[17] 
Azniv Kasparian, Ivan Marinov. Duursma's reduced polynomial. Advances in Mathematics of Communications, 2017, 11 (4) : 647669. doi: 10.3934/amc.2017048 
[18] 
Zhitao Zhang, Haijun Luo. Symmetry and asymptotic behavior of ground state solutions for schrödinger systems with linear interaction. Communications on Pure & Applied Analysis, 2018, 17 (3) : 787806. doi: 10.3934/cpaa.2018040 
[19] 
Tianliang Hou, Yanping Chen. Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements. Journal of Industrial & Management Optimization, 2013, 9 (3) : 631642. doi: 10.3934/jimo.2013.9.631 
[20] 
Elham Mardaneh, Ryan Loxton, Qun Lin, Phil Schmidli. A mixedinteger linear programming model for optimal vessel scheduling in offshore oil and gas operations. Journal of Industrial & Management Optimization, 2017, 13 (4) : 16011623. doi: 10.3934/jimo.2017009 
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]