• Previous Article
    A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction Part I: Formulation, Analysis, and Computations
  • CPAA Home
  • This Issue
  • Next Article
    On diagonal elliptic and parabolic systems with super-quadratic Hamiltonians
January  2009, 8(1): 95-121. doi: 10.3934/cpaa.2009.8.95

Reduced symmetry elements in linear elasticity


Dipartimento di Matematica, CeSNA and Università di Pavia, Via Ferrata 5, 27100 Pavia, Italy


CeSNA, IUSS, IMATI-CNR, Via Ferrata 5, 27100, Pavia, Italy


GIREF, Université Laval, Canada

Received  April 2008 Revised  August 2008 Published  October 2008

In continuum mechanics problems, we have to work in most cases with symmetric tensors, symmetry expressing the conservation of angular momentum. Discretization of symmetric tensors is however difficult and a classical solution is to employ some form of reduced symmetry. We present two ways of introducing elements with reduced symmetry. The first one is based on Stokes problems, and in the two-dimensional case allows to recover practically all interesting elements on the market. This however is (definitely) not true in three dimensions. On the other hand the second approach (based on a very nice property of several interpolation operators) works for three-dimensional problems as well, and allows, in particular, to prove the convergence of the Arnold-Falk-Winther element with simple and standard arguments, without the use of the Berstein-Gelfand-Gelfand resolution.
Citation: Daniele Boffi, Franco Brezzi, Michel Fortin. Reduced symmetry elements in linear elasticity. Communications on Pure and Applied Analysis, 2009, 8 (1) : 95-121. doi: 10.3934/cpaa.2009.8.95

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks and Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617


Annie Raoult. Symmetry groups in nonlinear elasticity: an exercise in vintage mathematics. Communications on Pure and Applied Analysis, 2009, 8 (1) : 435-456. doi: 10.3934/cpaa.2009.8.435


Cornel Marius Murea, Dan Tiba. Topological optimization and minimal compliance in linear elasticity. Evolution Equations and Control Theory, 2020, 9 (4) : 1115-1131. doi: 10.3934/eect.2020043


Bernd Schmidt. On the derivation of linear elasticity from atomistic models. Networks and Heterogeneous Media, 2009, 4 (4) : 789-812. doi: 10.3934/nhm.2009.4.789


Eliane Bécache, Laurent Bourgeois, Lucas Franceschini, Jérémi Dardé. Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: The 1D case. Inverse Problems and Imaging, 2015, 9 (4) : 971-1002. doi: 10.3934/ipi.2015.9.971


Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming formulations of deterministic infinite horizon optimal control problems in discrete time. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3821-3838. doi: 10.3934/dcdsb.2017192


Mark S. Gockenbach, Akhtar A. Khan. Identification of Lamé parameters in linear elasticity: a fixed point approach. Journal of Industrial and Management Optimization, 2005, 1 (4) : 487-497. doi: 10.3934/jimo.2005.1.487


Zhangxin Chen, Qiaoyuan Jiang, Yanli Cui. Locking-free nonconforming finite elements for planar linear elasticity. Conference Publications, 2005, 2005 (Special) : 181-189. doi: 10.3934/proc.2005.2005.181


Claudio Meneses. Linear phase space deformations with angular momentum symmetry. Journal of Geometric Mechanics, 2019, 11 (1) : 45-58. doi: 10.3934/jgm.2019003


Dmitry V. Zenkov. Linear conservation laws of nonholonomic systems with symmetry. Conference Publications, 2003, 2003 (Special) : 967-976. doi: 10.3934/proc.2003.2003.967


Qinghong Zhang, Gang Chen, Ting Zhang. Duality formulations in semidefinite programming. Journal of Industrial and Management Optimization, 2010, 6 (4) : 881-893. doi: 10.3934/jimo.2010.6.881


Lingling Lv, Wei He, Xianxing Liu, Lei Zhang. A robust reduced-order observers design approach for linear discrete periodic systems. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2799-2812. doi: 10.3934/jimo.2019081


Francesca Biagini, Katharina Oberpriller. Reduced-form setting under model uncertainty with non-linear affine intensities. Probability, Uncertainty and Quantitative Risk, 2021, 6 (3) : 159-188. doi: 10.3934/puqr.2021008


Pedro Freitas. The linear damped wave equation, Hamiltonian symmetry, and the importance of being odd. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 635-640. doi: 10.3934/dcds.1998.4.635


Sebastian Reich, Seoleun Shin. On the consistency of ensemble transform filter formulations. Journal of Computational Dynamics, 2014, 1 (1) : 177-189. doi: 10.3934/jcd.2014.1.177


Santiago Montaner, Arnaud Münch. Approximation of controls for linear wave equations: A first order mixed formulation. Mathematical Control and Related Fields, 2019, 9 (4) : 729-758. doi: 10.3934/mcrf.2019030


Alain Bensoussan, Shaokuan Chen, Suresh P. Sethi. Linear quadratic differential games with mixed leadership: The open-loop solution. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 95-108. doi: 10.3934/naco.2013.3.95


Ying Hu, Shanjian Tang. Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs. Probability, Uncertainty and Quantitative Risk, 2019, 4 (0) : 1-. doi: 10.1186/s41546-018-0035-x


Zhitao Zhang, Haijun Luo. Symmetry and asymptotic behavior of ground state solutions for schrödinger systems with linear interaction. Communications on Pure and Applied Analysis, 2018, 17 (3) : 787-806. doi: 10.3934/cpaa.2018040


Azniv Kasparian, Ivan Marinov. Duursma's reduced polynomial. Advances in Mathematics of Communications, 2017, 11 (4) : 647-669. doi: 10.3934/amc.2017048

2020 Impact Factor: 1.916


  • PDF downloads (162)
  • HTML views (0)
  • Cited by (62)

Other articles
by authors

[Back to Top]