January  2010, 9(1): 109-140. doi: 10.3934/cpaa.2010.9.109

Optimal Hardy inequalities for general elliptic operators with improvements

1. 

Department of Mathematics, The University of British Columbia, Room 121, 1984 Mathematics Road, Vancouver, B.C., Canada V6T 1Z2, Canada

Received  December 2008 Revised  July 2009 Published  October 2009

We establish Hardy inequalities of the form

$ \int_\Omega | \nabla u|_A^2 dx \ge \frac{1}{4} \int_\Omega \frac{| \nabla E|_A^2}{E^2}u^2dx, \qquad u \in H_0^1(\Omega) \qquad\qquad (1)$

where $ E$ is a positive function defined in $ \Omega$, -div$(A \nabla E)$ is a nonnegative nonzero finite measure in $ \Omega$ which we denote by $ \mu$ and where $ A(x)$ is a $ n \times n$ symmetric, uniformly positive definite matrix defined in $ \Omega$ with $ | \xi |_A^2:= A(x) \xi \cdot \xi$ for $ \xi \in \mathbb{R}^n$. We show that (1) is optimal if $ E=0$ on $ \partial \Omega$ or $ E=\infty$ on the support of $ \mu$ and is not attained in either case. When $ E=0$ on $\partial \Omega$ we show

$ \int_\Omega | \nabla u|_A^2dx \ge \frac{1}{4} \int_\Omega \frac{| \nabla E|_A^2}{E^2}u^2dx + \frac{1}{2} \int_\Omega \frac{u^2}{E} d \mu, \qquad u \in H_0^1(\Omega)\qquad (2) $

is optimal and not attained. Optimal weighted versions of these inequalities are also established. Optimal analogous versions of (1) and (2) are established for $p$≠ 2 which, in the case that $ \mu$ is a Dirac mass, answers a best constant question posed by Adimurthi and Sekar (see [1]).
We examine improved versions of the above inequalities of the form

$\int_\Omega | \nabla u|_A^2dx \ge \frac{1}{4} \int_\Omega \frac{| \nabla E|_A^2}{E^2} u^2dx + \int_\Omega V(x) u^2dx, \qquad u \in H_0^1(\Omega).\qquad (3)$

Necessary and sufficient conditions on $V$ are obtained (in terms of the solvability of a linear pde) for (3) to hold. Analogous results involving improvements are obtained for the weighted versions.
In addition we obtain various results concerning the above inequalities valid for functions $ u$ which are nonzero on the boundary of $ \Omega$. We also examine the nonquadradic case ,ie. $p$ ≠2 of the above inequalities.

Citation: Craig Cowan. Optimal Hardy inequalities for general elliptic operators with improvements. Communications on Pure & Applied Analysis, 2010, 9 (1) : 109-140. doi: 10.3934/cpaa.2010.9.109
[1]

Roberta Bosi, Jean Dolbeault, Maria J. Esteban. Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators. Communications on Pure & Applied Analysis, 2008, 7 (3) : 533-562. doi: 10.3934/cpaa.2008.7.533

[2]

Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Enrico Obrecht, Silvia Romanelli. Nonsymmetric elliptic operators with Wentzell boundary conditions in general domains. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2475-2487. doi: 10.3934/cpaa.2016045

[3]

Barbara Brandolini, Francesco Chiacchio, Cristina Trombetti. Hardy type inequalities and Gaussian measure. Communications on Pure & Applied Analysis, 2007, 6 (2) : 411-428. doi: 10.3934/cpaa.2007.6.411

[4]

Juan Luis Vázquez, Nikolaos B. Zographopoulos. Hardy type inequalities and hidden energies. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5457-5491. doi: 10.3934/dcds.2013.33.5457

[5]

Lorenzo Brasco, Eleonora Cinti. On fractional Hardy inequalities in convex sets. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4019-4040. doi: 10.3934/dcds.2018175

[6]

Yaiza Canzani, A. Rod Gover, Dmitry Jakobson, Raphaël Ponge. Nullspaces of conformally invariant operators. Applications to $\boldsymbol{Q_k}$-curvature. Electronic Research Announcements, 2013, 20: 43-50. doi: 10.3934/era.2013.20.43

[7]

Pradeep Boggarapu, Luz Roncal, Sundaram Thangavelu. On extension problem, trace Hardy and Hardy's inequalities for some fractional Laplacians. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2575-2605. doi: 10.3934/cpaa.2019116

[8]

Angelo Alvino, Roberta Volpicelli, Bruno Volzone. A remark on Hardy type inequalities with remainder terms. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 801-807. doi: 10.3934/dcdss.2011.4.801

[9]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[10]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[11]

Stathis Filippas, Luisa Moschini, Achilles Tertikas. Trace Hardy--Sobolev--Maz'ya inequalities for the half fractional Laplacian. Communications on Pure & Applied Analysis, 2015, 14 (2) : 373-382. doi: 10.3934/cpaa.2015.14.373

[12]

Jerome A. Goldstein, Ismail Kombe, Abdullah Yener. A unified approach to weighted Hardy type inequalities on Carnot groups. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2009-2021. doi: 10.3934/dcds.2017085

[13]

Boumediene Abdellaoui, Ahmed Attar. Quasilinear elliptic problem with Hardy potential and singular term. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1363-1380. doi: 10.3934/cpaa.2013.12.1363

[14]

P. Smoczynski, Mohamed Aly Tawhid. Two numerical schemes for general variational inequalities. Journal of Industrial & Management Optimization, 2008, 4 (2) : 393-406. doi: 10.3934/jimo.2008.4.393

[15]

Yusuke Murase, Risei Kano, Nobuyuki Kenmochi. Elliptic Quasi-variational inequalities and applications. Conference Publications, 2009, 2009 (Special) : 583-591. doi: 10.3934/proc.2009.2009.583

[16]

Patrizia Pucci, Marco Rigoli. Entire solutions of singular elliptic inequalities on complete manifolds. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 115-137. doi: 10.3934/dcds.2008.20.115

[17]

Serena Dipierro. Geometric inequalities and symmetry results for elliptic systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3473-3496. doi: 10.3934/dcds.2013.33.3473

[18]

Lucio Boccardo, Luigi Orsina, Ireneo Peral. A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 513-523. doi: 10.3934/dcds.2006.16.513

[19]

Soohyun Bae. Classification of positive solutions of semilinear elliptic equations with Hardy term. Conference Publications, 2013, 2013 (special) : 31-39. doi: 10.3934/proc.2013.2013.31

[20]

Yinbin Deng, Qi Gao. Asymptotic behavior of the positive solutions for an elliptic equation with Hardy term. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 367-380. doi: 10.3934/dcds.2009.24.367

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]