January  2010, 9(1): 109-140. doi: 10.3934/cpaa.2010.9.109

Optimal Hardy inequalities for general elliptic operators with improvements


Department of Mathematics, The University of British Columbia, Room 121, 1984 Mathematics Road, Vancouver, B.C., Canada V6T 1Z2, Canada

Received  December 2008 Revised  July 2009 Published  October 2009

We establish Hardy inequalities of the form

$ \int_\Omega | \nabla u|_A^2 dx \ge \frac{1}{4} \int_\Omega \frac{| \nabla E|_A^2}{E^2}u^2dx, \qquad u \in H_0^1(\Omega) \qquad\qquad (1)$

where $ E$ is a positive function defined in $ \Omega$, -div$(A \nabla E)$ is a nonnegative nonzero finite measure in $ \Omega$ which we denote by $ \mu$ and where $ A(x)$ is a $ n \times n$ symmetric, uniformly positive definite matrix defined in $ \Omega$ with $ | \xi |_A^2:= A(x) \xi \cdot \xi$ for $ \xi \in \mathbb{R}^n$. We show that (1) is optimal if $ E=0$ on $ \partial \Omega$ or $ E=\infty$ on the support of $ \mu$ and is not attained in either case. When $ E=0$ on $\partial \Omega$ we show

$ \int_\Omega | \nabla u|_A^2dx \ge \frac{1}{4} \int_\Omega \frac{| \nabla E|_A^2}{E^2}u^2dx + \frac{1}{2} \int_\Omega \frac{u^2}{E} d \mu, \qquad u \in H_0^1(\Omega)\qquad (2) $

is optimal and not attained. Optimal weighted versions of these inequalities are also established. Optimal analogous versions of (1) and (2) are established for $p$≠ 2 which, in the case that $ \mu$ is a Dirac mass, answers a best constant question posed by Adimurthi and Sekar (see [1]).
We examine improved versions of the above inequalities of the form

$\int_\Omega | \nabla u|_A^2dx \ge \frac{1}{4} \int_\Omega \frac{| \nabla E|_A^2}{E^2} u^2dx + \int_\Omega V(x) u^2dx, \qquad u \in H_0^1(\Omega).\qquad (3)$

Necessary and sufficient conditions on $V$ are obtained (in terms of the solvability of a linear pde) for (3) to hold. Analogous results involving improvements are obtained for the weighted versions.
In addition we obtain various results concerning the above inequalities valid for functions $ u$ which are nonzero on the boundary of $ \Omega$. We also examine the nonquadradic case ,ie. $p$ ≠2 of the above inequalities.

Citation: Craig Cowan. Optimal Hardy inequalities for general elliptic operators with improvements. Communications on Pure and Applied Analysis, 2010, 9 (1) : 109-140. doi: 10.3934/cpaa.2010.9.109

Roberta Bosi, Jean Dolbeault, Maria J. Esteban. Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators. Communications on Pure and Applied Analysis, 2008, 7 (3) : 533-562. doi: 10.3934/cpaa.2008.7.533


Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure and Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274


Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control and Related Fields, 2021, 11 (3) : 479-498. doi: 10.3934/mcrf.2021009


Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Enrico Obrecht, Silvia Romanelli. Nonsymmetric elliptic operators with Wentzell boundary conditions in general domains. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2475-2487. doi: 10.3934/cpaa.2016045


Barbara Brandolini, Francesco Chiacchio, Cristina Trombetti. Hardy type inequalities and Gaussian measure. Communications on Pure and Applied Analysis, 2007, 6 (2) : 411-428. doi: 10.3934/cpaa.2007.6.411


Juan Luis Vázquez, Nikolaos B. Zographopoulos. Hardy type inequalities and hidden energies. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5457-5491. doi: 10.3934/dcds.2013.33.5457


Lorenzo Brasco, Eleonora Cinti. On fractional Hardy inequalities in convex sets. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4019-4040. doi: 10.3934/dcds.2018175


Biagio Cassano, Lucrezia Cossetti, Luca Fanelli. Improved Hardy-Rellich inequalities. Communications on Pure and Applied Analysis, 2022, 21 (3) : 867-889. doi: 10.3934/cpaa.2022002


Yaiza Canzani, A. Rod Gover, Dmitry Jakobson, Raphaël Ponge. Nullspaces of conformally invariant operators. Applications to $\boldsymbol{Q_k}$-curvature. Electronic Research Announcements, 2013, 20: 43-50. doi: 10.3934/era.2013.20.43


Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1945-1966. doi: 10.3934/dcdss.2020469


Pradeep Boggarapu, Luz Roncal, Sundaram Thangavelu. On extension problem, trace Hardy and Hardy's inequalities for some fractional Laplacians. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2575-2605. doi: 10.3934/cpaa.2019116


Angelo Alvino, Roberta Volpicelli, Bruno Volzone. A remark on Hardy type inequalities with remainder terms. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 801-807. doi: 10.3934/dcdss.2011.4.801


Manli Song, Jinggang Tan. Hardy inequalities for the fractional powers of the Grushin operator. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4699-4726. doi: 10.3934/cpaa.2020192


Li Wang, Qiang Xu, Shulin Zhou. $ L^p $ Neumann problems in homogenization of general elliptic operators. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 5019-5045. doi: 10.3934/dcds.2020210


Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial and Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201


Muhammad Aslam Noor, Khalida Inayat Noor. General biconvex functions and bivariational inequalities. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021041


Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164


Stathis Filippas, Luisa Moschini, Achilles Tertikas. Trace Hardy--Sobolev--Maz'ya inequalities for the half fractional Laplacian. Communications on Pure and Applied Analysis, 2015, 14 (2) : 373-382. doi: 10.3934/cpaa.2015.14.373


Jerome A. Goldstein, Ismail Kombe, Abdullah Yener. A unified approach to weighted Hardy type inequalities on Carnot groups. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2009-2021. doi: 10.3934/dcds.2017085


Boumediene Abdellaoui, Ahmed Attar. Quasilinear elliptic problem with Hardy potential and singular term. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1363-1380. doi: 10.3934/cpaa.2013.12.1363

2021 Impact Factor: 1.273


  • PDF downloads (263)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]