• Previous Article
    Imperfect bifurcations in nonlinear elliptic equations on spherical caps
  • CPAA Home
  • This Issue
  • Next Article
    Homogenization limit and asymptotic decay for electrical conduction in biological tissues in the high radiofrequency range
September  2010, 9(5): 1161-1188. doi: 10.3934/cpaa.2010.9.1161

Kirchhoff systems with nonlinear source and boundary damping terms

1. 

Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli 1, I–06123 Perugia, Italy, Italy

Received  August 2009 Revised  November 2009 Published  May 2010

In this paper we treat the question of the non--existence of global solutions, or their long time behavior, of nonlinear hyperbolic Kirchhoff systems. The main $p$--Kirchhoff operator may be affected by a perturbation which behaves like $|u|^{p-2} u$ and the systems also involve an external force $f$ and a nonlinear boundary damping $Q$. When $p=2$, we consider some problems involving a higher order dissipation term, under dynamic boundary conditions. For them we give criteria in order that $ || u(t,\cdot) ||_q\to\infty$ as $t \to\infty$ along any global solution $u=u(t,x)$, where $q$ is a parameter related to the growth of $f$ in $u$. Special subcases of $f$ and $Q$, interesting in applications, are presented in Sections 4, 5 and 6.
Citation: Giuseppina Autuori, Patrizia Pucci. Kirchhoff systems with nonlinear source and boundary damping terms. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1161-1188. doi: 10.3934/cpaa.2010.9.1161
[1]

Claudianor O. Alves, M. M. Cavalcanti, Valeria N. Domingos Cavalcanti, Mohammad A. Rammaha, Daniel Toundykov. On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 583-608. doi: 10.3934/dcdss.2009.2.583

[2]

Vo Anh Khoa, Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. Evolution Equations and Control Theory, 2019, 8 (2) : 359-395. doi: 10.3934/eect.2019019

[3]

Gongwei Liu. The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term. Electronic Research Archive, 2020, 28 (1) : 263-289. doi: 10.3934/era.2020016

[4]

Enzo Vitillaro. Blow–up for the wave equation with hyperbolic dynamical boundary conditions, interior and boundary nonlinear damping and sources. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4575-4608. doi: 10.3934/dcdss.2021130

[5]

Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure and Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521

[6]

Nadjat Doudi, Salah Boulaaras, Nadia Mezouar, Rashid Jan. Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022106

[7]

Yi Cheng, Zhihui Dong, Donal O' Regan. Exponential stability of axially moving Kirchhoff-beam systems with nonlinear boundary damping and disturbance. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021230

[8]

Evgeny Galakhov, Olga Salieva. Blow-up for nonlinear inequalities with gradient terms and singularities on unbounded sets. Conference Publications, 2015, 2015 (special) : 489-494. doi: 10.3934/proc.2015.0489

[9]

Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683

[10]

Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543

[11]

Mengxian Lv, Jianghao Hao. General decay and blow-up for coupled Kirchhoff wave equations with dynamic boundary conditions. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021058

[12]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[13]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[14]

Françoise Demengel, O. Goubet. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Communications on Pure and Applied Analysis, 2013, 12 (2) : 621-645. doi: 10.3934/cpaa.2013.12.621

[15]

Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065

[16]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[17]

Jinxing Liu, Xiongrui Wang, Jun Zhou, Huan Zhang. Blow-up phenomena for the sixth-order Boussinesq equation with fourth-order dispersion term and nonlinear source. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4321-4335. doi: 10.3934/dcdss.2021108

[18]

Yuya Tanaka, Tomomi Yokota. Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022075

[19]

Luigi C. Berselli, Carlo R. Grisanti. On the regularity up to the boundary for certain nonlinear elliptic systems. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 53-71. doi: 10.3934/dcdss.2016.9.53

[20]

Monica Marras, Stella Vernier Piro. Bounds for blow-up time in nonlinear parabolic systems. Conference Publications, 2011, 2011 (Special) : 1025-1031. doi: 10.3934/proc.2011.2011.1025

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (130)
  • HTML views (0)
  • Cited by (22)

Other articles
by authors

[Back to Top]