
Previous Article
On a class of integrodifferential problems
 CPAA Home
 This Issue

Next Article
Robin boundary condition on scale irregular fractals
Materials with memory: Free energies & solution exponential decay
1.  Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Sapienza Università di Roma,, Via A. Scarpa 16, 00161 ROME, Italy 
[1] 
Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden. Minimum free energy in the frequency domain for a heat conductor with memory. Discrete and Continuous Dynamical Systems  B, 2010, 14 (3) : 793816. doi: 10.3934/dcdsb.2010.14.793 
[2] 
Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. Heat conduction with memory: A singular kernel problem. Evolution Equations and Control Theory, 2014, 3 (3) : 399410. doi: 10.3934/eect.2014.3.399 
[3] 
Corrado Mascia. Stability analysis for linear heat conduction with memory kernels described by Gamma functions. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 35693584. doi: 10.3934/dcds.2015.35.3569 
[4] 
Yizhao Qin, Yuxia Guo, PengFei Yao. Energy decay and global smooth solutions for a free boundary fluidnonlinear elastic structure interface model with boundary dissipation. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 15551593. doi: 10.3934/dcds.2020086 
[5] 
Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. A thermo piezoelectric model: Exponential decay of the total energy. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 52735292. doi: 10.3934/dcds.2013.33.5273 
[6] 
Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden, Adele Manes. Energy stability for thermoviscous fluids with a fading memory heat flux. Evolution Equations and Control Theory, 2015, 4 (3) : 265279. doi: 10.3934/eect.2015.4.265 
[7] 
Roberto Triggiani, Jing Zhang. Heatviscoelastic plate interaction: Analyticity, spectral analysis, exponential decay. Evolution Equations and Control Theory, 2018, 7 (1) : 153182. doi: 10.3934/eect.2018008 
[8] 
Shikuan Mao, Yongqin Liu. Decay of solutions to generalized plate type equations with memory. Kinetic and Related Models, 2014, 7 (1) : 121131. doi: 10.3934/krm.2014.7.121 
[9] 
Pavol Quittner. The decay of global solutions of a semilinear heat equation. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 307318. doi: 10.3934/dcds.2008.21.307 
[10] 
Stéphane Gerbi, Belkacem SaidHouari. Exponential decay for solutions to semilinear damped wave equation. Discrete and Continuous Dynamical Systems  S, 2012, 5 (3) : 559566. doi: 10.3934/dcdss.2012.5.559 
[11] 
Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control and Related Fields, 2019, 9 (2) : 277287. doi: 10.3934/mcrf.2019014 
[12] 
Irena Lasiecka, Roberto Triggiani. Heatstructure interaction with viscoelastic damping: Analyticity with sharp analytic sector, exponential decay, fractional powers. Communications on Pure and Applied Analysis, 2016, 15 (5) : 15151543. doi: 10.3934/cpaa.2016001 
[13] 
ChuehHsin Chang, ChiunChuan Chen, ChihChiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete and Continuous Dynamical Systems  B, 2021, 26 (4) : 17971809. doi: 10.3934/dcdsb.2021028 
[14] 
Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 3759. doi: 10.3934/eect.2016.5.37 
[15] 
Flavia Smarrazzo, Alberto Tesei. Entropy solutions of forwardbackward parabolic equations with Devonshire free energy. Networks and Heterogeneous Media, 2012, 7 (4) : 941966. doi: 10.3934/nhm.2012.7.941 
[16] 
Xueke Pu, Boling Guo. Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction. Kinetic and Related Models, 2016, 9 (1) : 165191. doi: 10.3934/krm.2016.9.165 
[17] 
Micol Amar, Roberto Gianni. LaplaceBeltrami operator for the heat conduction in polymer coating of electronic devices. Discrete and Continuous Dynamical Systems  B, 2018, 23 (4) : 17391756. doi: 10.3934/dcdsb.2018078 
[18] 
Claudio Giorgi, Diego Grandi, Vittorino Pata. On the GreenNaghdi Type III heat conduction model. Discrete and Continuous Dynamical Systems  B, 2014, 19 (7) : 21332143. doi: 10.3934/dcdsb.2014.19.2133 
[19] 
Fabio Camilli, Raul De Maio. Memory effects in measure transport equations. Kinetic and Related Models, 2019, 12 (6) : 12291245. doi: 10.3934/krm.2019047 
[20] 
Augusto Visintin. OhmHall conduction in hysteresisfree ferromagnetic processes. Discrete and Continuous Dynamical Systems  B, 2013, 18 (2) : 551563. doi: 10.3934/dcdsb.2013.18.551 
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]