September  2010, 9(5): 1235-1248. doi: 10.3934/cpaa.2010.9.1235

Materials with memory: Free energies & solution exponential decay

1. 

Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Sapienza Università di Roma,, Via A. Scarpa 16, 00161 ROME, Italy

Received  October 2009 Revised  December 2009 Published  May 2010

The model of a rigid linear heat conductor with memory is analyzed. Specifically, an evolution problem which describes the time evolution of the temperature distribution within a rigid heat conductor with memory is studied. The attention is focussed on the thermodynamical state of such a rigid heat conductor which, according to the adopted constitutive equations, depends on the history of the material; indeed, the dependence of the heat flux on the history of the temperature’s gradient is modeled via an integral term. Thus, the evolution problem under investigation is an integro-differential one with assigned initial and boundary conditions. Crucial in the present study are suitable expressions of an appropriate free energy and thermal work, related one to the other, which allow to construct functional spaces which are meaningful both under the physical as well as the analytic viewpoint. On the basis of existence and uniqueness results previously obtained, exponential decay at infinity is proved.
Citation: Sandra Carillo. Materials with memory: Free energies & solution exponential decay. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1235-1248. doi: 10.3934/cpaa.2010.9.1235
[1]

Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden. Minimum free energy in the frequency domain for a heat conductor with memory. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 793-816. doi: 10.3934/dcdsb.2010.14.793

[2]

Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. Heat conduction with memory: A singular kernel problem. Evolution Equations & Control Theory, 2014, 3 (3) : 399-410. doi: 10.3934/eect.2014.3.399

[3]

Corrado Mascia. Stability analysis for linear heat conduction with memory kernels described by Gamma functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3569-3584. doi: 10.3934/dcds.2015.35.3569

[4]

Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. A thermo piezoelectric model: Exponential decay of the total energy. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5273-5292. doi: 10.3934/dcds.2013.33.5273

[5]

Yizhao Qin, Yuxia Guo, Peng-Fei Yao. Energy decay and global smooth solutions for a free boundary fluid-nonlinear elastic structure interface model with boundary dissipation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1555-1593. doi: 10.3934/dcds.2020086

[6]

Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden, Adele Manes. Energy stability for thermo-viscous fluids with a fading memory heat flux. Evolution Equations & Control Theory, 2015, 4 (3) : 265-279. doi: 10.3934/eect.2015.4.265

[7]

Shikuan Mao, Yongqin Liu. Decay of solutions to generalized plate type equations with memory. Kinetic & Related Models, 2014, 7 (1) : 121-131. doi: 10.3934/krm.2014.7.121

[8]

Roberto Triggiani, Jing Zhang. Heat-viscoelastic plate interaction: Analyticity, spectral analysis, exponential decay. Evolution Equations & Control Theory, 2018, 7 (1) : 153-182. doi: 10.3934/eect.2018008

[9]

Pavol Quittner. The decay of global solutions of a semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 307-318. doi: 10.3934/dcds.2008.21.307

[10]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[11]

Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control & Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014

[12]

Irena Lasiecka, Roberto Triggiani. Heat--structure interaction with viscoelastic damping: Analyticity with sharp analytic sector, exponential decay, fractional powers. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1515-1543. doi: 10.3934/cpaa.2016001

[13]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[14]

Flavia Smarrazzo, Alberto Tesei. Entropy solutions of forward-backward parabolic equations with Devonshire free energy. Networks & Heterogeneous Media, 2012, 7 (4) : 941-966. doi: 10.3934/nhm.2012.7.941

[15]

Fabio Camilli, Raul De Maio. Memory effects in measure transport equations. Kinetic & Related Models, 2019, 12 (6) : 1229-1245. doi: 10.3934/krm.2019047

[16]

Peng Sun. Exponential decay of Lebesgue numbers. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3773-3785. doi: 10.3934/dcds.2012.32.3773

[17]

Xueke Pu, Boling Guo. Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction. Kinetic & Related Models, 2016, 9 (1) : 165-191. doi: 10.3934/krm.2016.9.165

[18]

Micol Amar, Roberto Gianni. Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1739-1756. doi: 10.3934/dcdsb.2018078

[19]

Claudio Giorgi, Diego Grandi, Vittorino Pata. On the Green-Naghdi Type III heat conduction model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2133-2143. doi: 10.3934/dcdsb.2014.19.2133

[20]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems & Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]