November  2010, 9(6): 1639-1651. doi: 10.3934/cpaa.2010.9.1639

Global dynamics of the periodic un-stirred chemostat with a toxin-producing competitor

1. 

Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China

2. 

Department of Mathematics, South China Normal University, Guangzhou, Guangdong, 510631, China

Received  May 2008 Revised  August 2010 Published  August 2010

This paper is concerned with the un-stirred chemostat with a toxin-producing competitor. The novelties of the modified model are the periodicity appearing in the boundary conditions, the different diffusive coefficients of the nutrient and the microorganisms, and some kinds of death rates. Both uniform persistence and global extinction of the microorganisms are established under suitable conditions in terms of principal eigenvalues of scalar periodic parabolic eigenvalue problems. Our result implies that the toxin inhibits the sensitive microorganism indeed. The techniques includes the theories of asymptotic periodic semi-flows, uniform persistence and the perturbation of global attractor.
Citation: Yifu Wang, Jingxue Yin. Global dynamics of the periodic un-stirred chemostat with a toxin-producing competitor. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1639-1651. doi: 10.3934/cpaa.2010.9.1639
[1]

Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041

[2]

Rui Peng, Dong Wei. The periodic-parabolic logistic equation on $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 619-641. doi: 10.3934/dcds.2012.32.619

[3]

Xiaoqing He, Sze-Bi Hsu, Feng-Bin Wang. A periodic-parabolic Droop model for two species competition in an unstirred chemostat. Discrete & Continuous Dynamical Systems - A, 2020, 40 (7) : 4427-4451. doi: 10.3934/dcds.2020185

[4]

Y. Chen, L. Wang. Global attractivity of a circadian pacemaker model in a periodic environment. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 277-288. doi: 10.3934/dcdsb.2005.5.277

[5]

Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789

[6]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020094

[7]

Sergey V. Bolotin, Piero Negrini. Variational approach to second species periodic solutions of Poincaré of the 3 body problem. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1009-1032. doi: 10.3934/dcds.2013.33.1009

[8]

Sebastian J. Schreiber. On persistence and extinction for randomly perturbed dynamical systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 457-463. doi: 10.3934/dcdsb.2007.7.457

[9]

Liang Kong, Tung Nguyen, Wenxian Shen. Effects of localized spatial variations on the uniform persistence and spreading speeds of time periodic two species competition systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1613-1636. doi: 10.3934/cpaa.2019077

[10]

Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002

[11]

Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033

[12]

M. R. S. Kulenović, Orlando Merino. A global attractivity result for maps with invariant boxes. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 97-110. doi: 10.3934/dcdsb.2006.6.97

[13]

Marita Thomas. Uniform Poincaré-Sobolev and isoperimetric inequalities for classes of domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2741-2761. doi: 10.3934/dcds.2015.35.2741

[14]

Wen Jin, Horst R. Thieme. Persistence and extinction of diffusing populations with two sexes and short reproductive season. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3209-3218. doi: 10.3934/dcdsb.2014.19.3209

[15]

Wen Jin, Horst R. Thieme. An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 447-470. doi: 10.3934/dcdsb.2016.21.447

[16]

Antonio Giorgilli, Stefano Marmi. Convergence radius in the Poincaré-Siegel problem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 601-621. doi: 10.3934/dcdss.2010.3.601

[17]

Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure & Applied Analysis, 2007, 6 (2) : 541-547. doi: 10.3934/cpaa.2007.6.541

[18]

Paul L. Salceanu. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents. Mathematical Biosciences & Engineering, 2011, 8 (3) : 807-825. doi: 10.3934/mbe.2011.8.807

[19]

P.E. Kloeden, Desheng Li, Chengkui Zhong. Uniform attractors of periodic and asymptotically periodic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 213-232. doi: 10.3934/dcds.2005.12.213

[20]

Roland Schnaubelt. Center manifolds and attractivity for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1193-1230. doi: 10.3934/dcds.2015.35.1193

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]