- Previous Article
- CPAA Home
- This Issue
-
Next Article
Multiple solutions for elliptic problem in $\mathbb{R}^N$ with critical Sobolev exponent and weight function
New periodic solutions for the circular restricted 3-body and 4-body problems
1. | College of Chengxian, Dongnan University, Nanjing 210088, China |
2. | College of Mathematics, Sichuan University, Chengdu 610064, China |
[1] |
Elbaz I. Abouelmagd, Juan Luis García Guirao, Jaume Llibre. Periodic orbits for the perturbed planar circular restricted 3–body problem. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1007-1020. doi: 10.3934/dcdsb.2019003 |
[2] |
Shiqing Zhang, Qing Zhou. Nonplanar and noncollision periodic solutions for $N$-body problems. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 679-685. doi: 10.3934/dcds.2004.10.679 |
[3] |
Sergey V. Bolotin, Piero Negrini. Variational approach to second species periodic solutions of Poincaré of the 3 body problem. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1009-1032. doi: 10.3934/dcds.2013.33.1009 |
[4] |
Gianni Arioli. Branches of periodic orbits for the planar restricted 3-body problem. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 745-755. doi: 10.3934/dcds.2004.11.745 |
[5] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[6] |
Samuel R. Kaplan, Ernesto A. Lacomba, Jaume Llibre. Symbolic dynamics of the elliptic rectilinear restricted 3--body problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 541-555. doi: 10.3934/dcdss.2008.1.541 |
[7] |
Jungsoo Kang. Some remarks on symmetric periodic orbits in the restricted three-body problem. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5229-5245. doi: 10.3934/dcds.2014.34.5229 |
[8] |
Jean-Baptiste Caillau, Bilel Daoud, Joseph Gergaud. Discrete and differential homotopy in circular restricted three-body control. Conference Publications, 2011, 2011 (Special) : 229-239. doi: 10.3934/proc.2011.2011.229 |
[9] |
Alain Albouy, Holger R. Dullin. Relative equilibria of the 3-body problem in $ \mathbb{R}^4 $. Journal of Geometric Mechanics, 2020, 12 (3) : 323-341. doi: 10.3934/jgm.2020012 |
[10] |
Giovanni F. Gronchi, Chiara Tardioli. The evolution of the orbit distance in the double averaged restricted 3-body problem with crossing singularities. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1323-1344. doi: 10.3934/dcdsb.2013.18.1323 |
[11] |
Niraj Pathak, V. O. Thomas, Elbaz I. Abouelmagd. The perturbed photogravitational restricted three-body problem: Analysis of resonant periodic orbits. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 849-875. doi: 10.3934/dcdss.2019057 |
[12] |
Holger R. Dullin, Jürgen Scheurle. Symmetry reduction of the 3-body problem in $ \mathbb{R}^4 $. Journal of Geometric Mechanics, 2020, 12 (3) : 377-394. doi: 10.3934/jgm.2020011 |
[13] |
Marcel Guardia, Tere M. Seara, Pau Martín, Lara Sabbagh. Oscillatory orbits in the restricted elliptic planar three body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 229-256. doi: 10.3934/dcds.2017009 |
[14] |
Eduardo S. G. Leandro. On the Dziobek configurations of the restricted $(N+1)$-body problem with equal masses. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 589-595. doi: 10.3934/dcdss.2008.1.589 |
[15] |
Arrigo Cellina. The regularity of solutions to some variational problems, including the p-Laplace equation for 3≤p < 4. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4071-4085. doi: 10.3934/dcds.2018177 |
[16] |
Eduardo Piña. Computing collinear 4-Body Problem central configurations with given masses. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1215-1230. doi: 10.3934/dcds.2013.33.1215 |
[17] |
Hadia H. Selim, Juan L. G. Guirao, Elbaz I. Abouelmagd. Libration points in the restricted three-body problem: Euler angles, existence and stability. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 703-710. doi: 10.3934/dcdss.2019044 |
[18] |
Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1763-1787. doi: 10.3934/dcds.2017074 |
[19] |
Martha Alvarez-Ramírez, Joaquín Delgado. Blow up of the isosceles 3--body problem with an infinitesimal mass. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1149-1173. doi: 10.3934/dcds.2003.9.1149 |
[20] |
Nai-Chia Chen. Symmetric periodic orbits in three sub-problems of the $N$-body problem. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1523-1548. doi: 10.3934/dcdsb.2014.19.1523 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]