March  2010, 9(2): 307-326. doi: 10.3934/cpaa.2010.9.307

Evolution by mean curvature flow in sub-Riemannian geometries: A stochastic approach

1. 

Department of Mathematical Sciences, University of Bath, Bath, BA1 7AY, United Kingdom

2. 

Department of Pure Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom

3. 

Institut für Mathematik, Technische Universität Berlin, Strasse des 17. Juni 136, 10632 Berlin, Germany

Received  January 2009 Revised  August 2009 Published  December 2009

We study evolution by horizontal mean curvature flow in sub- Riemannian geometries by using stochastic approach to prove the existence of a generalized evolution in these spaces. In particular we show that the value function of suitable family of stochastic control problems solves in the viscosity sense the level set equation for the evolution by horizontal mean curvature flow.
Citation: Nicolas Dirr, Federica Dragoni, Max von Renesse. Evolution by mean curvature flow in sub-Riemannian geometries: A stochastic approach. Communications on Pure and Applied Analysis, 2010, 9 (2) : 307-326. doi: 10.3934/cpaa.2010.9.307
[1]

Yoshikazu Giga, Hiroyoshi Mitake, Hung V. Tran. Remarks on large time behavior of level-set mean curvature flow equations with driving and source terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3983-3999. doi: 10.3934/dcdsb.2019228

[2]

Paul W. Y. Lee, Chengbo Li, Igor Zelenko. Ricci curvature type lower bounds for sub-Riemannian structures on Sasakian manifolds. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 303-321. doi: 10.3934/dcds.2016.36.303

[3]

Yunlong Huang, P. S. Krishnaprasad. Sub-Riemannian geometry and finite time thermodynamics Part 1: The stochastic oscillator. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1243-1268. doi: 10.3934/dcdss.2020072

[4]

Stefan Sommer, Anne Marie Svane. Modelling anisotropic covariance using stochastic development and sub-Riemannian frame bundle geometry. Journal of Geometric Mechanics, 2017, 9 (3) : 391-410. doi: 10.3934/jgm.2017015

[5]

Lucas Dahinden, Álvaro del Pino. Introducing sub-Riemannian and sub-Finsler billiards. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022014

[6]

Erlend Grong, Alexander Vasil’ev. Sub-Riemannian and sub-Lorentzian geometry on $SU(1,1)$ and on its universal cover. Journal of Geometric Mechanics, 2011, 3 (2) : 225-260. doi: 10.3934/jgm.2011.3.225

[7]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[8]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks and Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[9]

Daniel Genin, Serge Tabachnikov. On configuration spaces of plane polygons, sub-Riemannian geometry and periodic orbits of outer billiards. Journal of Modern Dynamics, 2007, 1 (2) : 155-173. doi: 10.3934/jmd.2007.1.155

[10]

Beatrice Abbondanza, Stefano Biagi. Riesz-type representation formulas for subharmonic functions in sub-Riemannian settings. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3161-3192. doi: 10.3934/cpaa.2021101

[11]

Changfeng Gui, Huaiyu Jian, Hongjie Ju. Properties of translating solutions to mean curvature flow. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 441-453. doi: 10.3934/dcds.2010.28.441

[12]

Giulio Colombo, Luciano Mari, Marco Rigoli. Remarks on mean curvature flow solitons in warped products. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1957-1991. doi: 10.3934/dcdss.2020153

[13]

Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016

[14]

Marie Henry, Danielle Hilhorst, Masayasu Mimura. A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 125-154. doi: 10.3934/dcdss.2011.4.125

[15]

Tobias H. Colding and Bruce Kleiner. Singularity structure in mean curvature flow of mean-convex sets. Electronic Research Announcements, 2003, 9: 121-124.

[16]

Daehwan Kim, Juncheol Pyo. Existence and asymptotic behavior of helicoidal translating solitons of the mean curvature flow. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5897-5919. doi: 10.3934/dcds.2018256

[17]

Kin Ming Hui. Existence of self-similar solutions of the inverse mean curvature flow. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 863-880. doi: 10.3934/dcds.2019036

[18]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[19]

Yoshikazu Giga, Yukihiro Seki, Noriaki Umeda. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1463-1470. doi: 10.3934/dcds.2011.29.1463

[20]

Bendong Lou. Periodic traveling waves of a mean curvature flow in heterogeneous media. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 231-249. doi: 10.3934/dcds.2009.25.231

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (127)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]