-
Previous Article
Remarks on the orbital instability of standing waves for the wave-Schrödinger system in higher dimensions
- CPAA Home
- This Issue
-
Next Article
Evolution by mean curvature flow in sub-Riemannian geometries: A stochastic approach
Locally Lipschitz perturbations of bisemigroups
1. | Department of Mathematics, University of Toledo, Toledo, Ohio 43606, United States |
$\cdot $ We show the existence and uniqueness of what we call local dichotomous mild solutions (DMS) that take the form
$x(t) = e^{(t-t_1)L}x_1 + \int_{t_1}^{t} e^{(t-s)L} f(\xi(s), s)ds$
$ y(t)= e^{-(t_2-t)R} y_2 - \int_{t}^{t_2} e^{-(s-t)R} g(\xi(s), s) ds$
$ t_1 < t_2, \qquad t_1\leq t \leq t_2$
for any sufficiently small time interval $[t_1, t_2]$
and any given $\xi :=(x_1, y_2)$ in a sufficiently small neighbourhood.
$\cdot $ We show that in the uniform $C^0$-norm DMSs vary continuously with $[t_1, t_2]$
and Lipschitz-continuously with $\xi $.
$\cdot $ We study the regularity of DMSs under various hypotheses.
$\cdot $ A simple example that leads to a bisemigroup is a semilinear
elliptic system that arises when
considering solitary waves in an infinite cylinder:
$u_{x x}+\Delta u = f(u), \quad u|_{\Gamma} = 0, \quad\Gamma= \mathbb{R}\times \partial\Omega, \quad (x, y, u)\in \mathbb{R}\times \Omega\times\mathbb{R}^m
where $\Omega$ is a bounded region in $ \mathbb{R}^n$ with $C^2$ boundary and $\Delta$ is the Laplacian in the variable $y\in \Omega$.
[1] |
Zonghao Li, Caibin Zeng. Center manifolds for ill-posed stochastic evolution equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2483-2499. doi: 10.3934/dcdsb.2021142 |
[2] |
Ola I. H. Maehlen. Solitary waves for weakly dispersive equations with inhomogeneous nonlinearities. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4113-4130. doi: 10.3934/dcds.2020174 |
[3] |
Juan Belmonte-Beitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1007-1017. doi: 10.3934/dcdss.2011.4.1007 |
[4] |
Philippe Gravejat. Asymptotics of the solitary waves for the generalized Kadomtsev-Petviashvili equations. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 835-882. doi: 10.3934/dcds.2008.21.835 |
[5] |
Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789 |
[6] |
Daniele Cassani, João Marcos do Ó, Abbas Moameni. Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations. Communications on Pure and Applied Analysis, 2010, 9 (2) : 281-306. doi: 10.3934/cpaa.2010.9.281 |
[7] |
Sergiy Zhuk. Inverse problems for linear ill-posed differential-algebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 1467-1476. doi: 10.3934/proc.2011.2011.1467 |
[8] |
Markus Haltmeier, Richard Kowar, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear ill-posed equations II: Applications. Inverse Problems and Imaging, 2007, 1 (3) : 507-523. doi: 10.3934/ipi.2007.1.507 |
[9] |
Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609 |
[10] |
Eliane Bécache, Laurent Bourgeois, Lucas Franceschini, Jérémi Dardé. Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: The 1D case. Inverse Problems and Imaging, 2015, 9 (4) : 971-1002. doi: 10.3934/ipi.2015.9.971 |
[11] |
Fengxin Chen. Stability and uniqueness of traveling waves for system of nonlocal evolution equations with bistable nonlinearity. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 659-673. doi: 10.3934/dcds.2009.24.659 |
[12] |
Walter Allegretto, Yanping Lin, Zhiyong Zhang. Convergence to convection-diffusion waves for solutions to dissipative nonlinear evolution equations. Conference Publications, 2009, 2009 (Special) : 11-23. doi: 10.3934/proc.2009.2009.11 |
[13] |
Grégoire Allaire, Carlos Conca, Luis Friz, Jaime H. Ortega. On Bloch waves for the Stokes equations. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 1-28. doi: 10.3934/dcdsb.2007.7.1 |
[14] |
Matthew A. Fury. Regularization for ill-posed inhomogeneous evolution problems in a Hilbert space. Conference Publications, 2013, 2013 (special) : 259-272. doi: 10.3934/proc.2013.2013.259 |
[15] |
Yi He, Gongbao Li. Concentrating solitary waves for a class of singularly perturbed quasilinear Schrödinger equations with a general nonlinearity. Mathematical Control and Related Fields, 2016, 6 (4) : 551-593. doi: 10.3934/mcrf.2016016 |
[16] |
Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328 |
[17] |
Risei Kano, Yusuke Murase. Solvability of nonlinear evolution equations generated by subdifferentials and perturbations. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 75-93. doi: 10.3934/dcdss.2014.7.75 |
[18] |
Tomás Caraballo, Leonid Shaikhet. Stability of delay evolution equations with stochastic perturbations. Communications on Pure and Applied Analysis, 2014, 13 (5) : 2095-2113. doi: 10.3934/cpaa.2014.13.2095 |
[19] |
Guozhi Dong, Bert Jüttler, Otmar Scherzer, Thomas Takacs. Convergence of Tikhonov regularization for solving ill-posed operator equations with solutions defined on surfaces. Inverse Problems and Imaging, 2017, 11 (2) : 221-246. doi: 10.3934/ipi.2017011 |
[20] |
Lianwang Deng. Local integral manifolds for nonautonomous and ill-posed equations with sectorially dichotomous operator. Communications on Pure and Applied Analysis, 2020, 19 (1) : 145-174. doi: 10.3934/cpaa.2020009 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]