
Previous Article
Stability properties of periodic standing waves for the KleinGordonSchrödinger system
 CPAA Home
 This Issue

Next Article
BegehrHile operator and its applications to some differential equations
Fast rate of dead core for fast diffusion equation with strong absorption
1.  College of mathematics and physics, Chongqing University, Chongqing, 400044, China 
2.  College of mathematics and physics, Chongqing University, Chongqing, 400044, School of mathematics and statistics, Southwest University, Chongqing, 400715, China 
3.  Department of Mathematics, Sichuan Normal University, Chengdu, 610066, China 
[1] 
Marek Fila, Michael Winkler. Sharp rate of convergence to Barenblatt profiles for a critical fast diffusion equation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 107119. doi: 10.3934/cpaa.2015.14.107 
[2] 
ChinChin Wu, Zhengce Zhang. Deadcore rates for the heat equation with a spatially dependent strong absorption. Discrete & Continuous Dynamical Systems  B, 2013, 18 (8) : 22032210. doi: 10.3934/dcdsb.2013.18.2203 
[3] 
Xinfu Chen, JongShenq Guo, Bei Hu. Deadcore rates for the porous medium equation with a strong absorption. Discrete & Continuous Dynamical Systems  B, 2012, 17 (6) : 17611774. doi: 10.3934/dcdsb.2012.17.1761 
[4] 
ShinYi Lee, ShinHwa Wang, ChiouPing Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a plaplacian steadystate reactiondiffusion problem. Conference Publications, 2005, 2005 (Special) : 587596. doi: 10.3934/proc.2005.2005.587 
[5] 
H. T. Liu. Impulsive effects on the existence of solutions for a fast diffusion equation. Conference Publications, 2001, 2001 (Special) : 248253. doi: 10.3934/proc.2001.2001.248 
[6] 
Marek Fila, JuanLuis Vázquez, Michael Winkler. A continuum of extinction rates for the fast diffusion equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 11291147. doi: 10.3934/cpaa.2011.10.1129 
[7] 
Kin Ming Hui, Sunghoon Kim. Existence of Neumann and singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems  A, 2015, 35 (10) : 48594887. doi: 10.3934/dcds.2015.35.4859 
[8] 
Marek Fila, Hannes Stuke. Special asymptotics for a critical fast diffusion equation. Discrete & Continuous Dynamical Systems  S, 2014, 7 (4) : 725735. doi: 10.3934/dcdss.2014.7.725 
[9] 
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems  A, 2017, 37 (11) : 59435977. doi: 10.3934/dcds.2017258 
[10] 
Felipe Wallison ChavesSilva, Sergio Guerrero, Jean Pierre Puel. Controllability of fast diffusion coupled parabolic systems. Mathematical Control & Related Fields, 2014, 4 (4) : 465479. doi: 10.3934/mcrf.2014.4.465 
[11] 
YunGang Chen, Yoshikazu Giga, Koh Sato. On instant extinction for very fast diffusion equations. Discrete & Continuous Dynamical Systems  A, 1997, 3 (2) : 243250. doi: 10.3934/dcds.1997.3.243 
[12] 
Massimiliano Berti, Philippe Bolle. Fast Arnold diffusion in systems with three time scales. Discrete & Continuous Dynamical Systems  A, 2002, 8 (3) : 795811. doi: 10.3934/dcds.2002.8.795 
[13] 
Marcel Freitag. The fast signal diffusion limit in nonlinear chemotaxis systems. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 00. doi: 10.3934/dcdsb.2019211 
[14] 
Zhengce Zhang, Bei Hu. Gradient blowup rate for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems  A, 2010, 26 (2) : 767779. doi: 10.3934/dcds.2010.26.767 
[15] 
ChiCheung Poon. Blowup rate of solutions of a degenerate nonlinear parabolic equation. Discrete & Continuous Dynamical Systems  B, 2019, 24 (10) : 53175336. doi: 10.3934/dcdsb.2019060 
[16] 
Mikaela Iacobelli. Asymptotic analysis for a very fast diffusion equation arising from the 1D quantization problem. Discrete & Continuous Dynamical Systems  A, 2019, 39 (9) : 49294943. doi: 10.3934/dcds.2019201 
[17] 
Annegret Glitzky. Energy estimates for electroreactiondiffusion systems with partly fast kinetics. Discrete & Continuous Dynamical Systems  A, 2009, 25 (1) : 159174. doi: 10.3934/dcds.2009.25.159 
[18] 
Gabriela Marinoschi. Well posedness of a timedifference scheme for a degenerate fast diffusion problem. Discrete & Continuous Dynamical Systems  B, 2010, 13 (2) : 435454. doi: 10.3934/dcdsb.2010.13.435 
[19] 
Dieter Bothe, Michel Pierre. The instantaneous limit for reactiondiffusion systems with a fast irreversible reaction. Discrete & Continuous Dynamical Systems  S, 2012, 5 (1) : 4959. doi: 10.3934/dcdss.2012.5.49 
[20] 
Chunhua Jin. Boundedness and global solvability to a chemotaxishaptotaxis model with slow and fast diffusion. Discrete & Continuous Dynamical Systems  B, 2018, 23 (4) : 16751688. doi: 10.3934/dcdsb.2018069 
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]