\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stability properties of periodic standing waves for the Klein-Gordon-Schrödinger system

Abstract Related Papers Cited by
  • We study the existence and orbital stability/instability of periodic standing wave solutions for the Klein-Gordon-Schrödinger system with Yukawa and cubic interactions. We prove the existence of periodic waves depending on the Jacobian elliptic functions. For one hand, the approach used to obtain the stability results is the classical Grillakis, Shatah and Strauss theory in the periodic context. On the other hand, to show the instability results we employ a general criterium introduced by Grillakis, which get orbital instability from linear instability.
    Mathematics Subject Classification: Primary: 35B10, 35B35; Secondary: 35Q99.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(103) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return