• Previous Article
    Flows of weakly compressible viscoelastic fluids through a regular bounded domain with inflow-outflow boundary conditions
  • CPAA Home
  • This Issue
  • Next Article
    Bifurcations of limit cycles in a reversible quadratic system with a center, a saddle and two nodes
May  2010, 9(3): 611-624. doi: 10.3934/cpaa.2010.9.611

Eigenmodes and eigenfrequencies of vibrating elliptic membranes: a Klein oscillation theorem and numerical calculations


UFMG, Depto. de Matematica, Avenida Antonio Carlos 6627, 30161-970, Belo Horizonte - MG, Brazil

Received  April 2009 Revised  December 2009 Published  January 2010

We give a complete proof of the existence of an infinite set of eigenmodes for a vibrating elliptic membrane in one to one correspondence with the well-known eigenmodes for a circular membrane. More exactly, we show that for each pair $(m,n) \in \{0,1,2, \cdots\}^2$ there exists a unique even eigenmode with $m$ ellipses and $n$ hyperbola branches as nodal curves and, similarly, for each $(m,n) \in \{0,1,2, \cdots\}\times \{1,2, \cdots\}$ there exists a unique odd eigenmode with $m$ ellipses and $n$ hyperbola branches as nodal curves. Our result is based on directly using the separation of variables method for the Helmholtz equation in elliptic coordinates and in proving that certain pairs of curves in the plane of parameters $a$ and $q$ cross each other at a single point. As side effects of our proof, a new and precise method for numerically calculating the eigenfrequencies of these modes is presented and also approximate formulae which explain rather well the qualitative asymptotic behavior of the eigenfrequencies for large eccentricities.
Citation: Armando G. M. Neves. Eigenmodes and eigenfrequencies of vibrating elliptic membranes: a Klein oscillation theorem and numerical calculations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 611-624. doi: 10.3934/cpaa.2010.9.611

O. A. Veliev. On the spectrality and spectral expansion of the non-self-adjoint mathieu-hill operator in $ L_{2}(-\infty, \infty) $. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1537-1562. doi: 10.3934/cpaa.2020077


Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139


Sari Lasanen. Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Problems & Imaging, 2012, 6 (2) : 267-287. doi: 10.3934/ipi.2012.6.267


Tianxiao Wang. Characterizations of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problems. I. Mathematical Control & Related Fields, 2019, 9 (2) : 385-409. doi: 10.3934/mcrf.2019018


Sari Lasanen. Non-Gaussian statistical inverse problems. Part I: Posterior distributions. Inverse Problems & Imaging, 2012, 6 (2) : 215-266. doi: 10.3934/ipi.2012.6.215


Miklós Horváth. Spectral shift functions in the fixed energy inverse scattering. Inverse Problems & Imaging, 2011, 5 (4) : 843-858. doi: 10.3934/ipi.2011.5.843


Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 1205-1208. doi: 10.3934/dcds.2009.24.1205


Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems & Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1


Antoine Henrot, El-Haj Laamri, Didier Schmitt. On some spectral problems arising in dynamic populations. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2429-2443. doi: 10.3934/cpaa.2012.11.2429


Katsukuni Nakagawa. Compactness of transfer operators and spectral representation of Ruelle zeta functions for super-continuous functions. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6331-6350. doi: 10.3934/dcds.2020282


Robert F. Bailey, John N. Bray. Decoding the Mathieu group M12. Advances in Mathematics of Communications, 2007, 1 (4) : 477-487. doi: 10.3934/amc.2007.1.477


Shiping Cao, Anthony Coniglio, Xueyan Niu, Richard H. Rand, Robert S. Strichartz. The mathieu differential equation and generalizations to infinite fractafolds. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1795-1845. doi: 10.3934/cpaa.2020073


Hugo Beirão da Veiga. Elliptic boundary value problems in spaces of continuous functions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 43-52. doi: 10.3934/dcdss.2016.9.43


Natalia O. Babych, Ilia V. Kamotski, Valery P. Smyshlyaev. Homogenization of spectral problems in bounded domains with doubly high contrasts. Networks & Heterogeneous Media, 2008, 3 (3) : 413-436. doi: 10.3934/nhm.2008.3.413


Farah Abdallah, Denis Mercier, Serge Nicaise. Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems. Evolution Equations & Control Theory, 2013, 2 (1) : 1-33. doi: 10.3934/eect.2013.2.1


Wanbin Tong, Hongjin He, Chen Ling, Liqun Qi. A nonmonotone spectral projected gradient method for tensor eigenvalue complementarity problems. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 425-437. doi: 10.3934/naco.2020042


Jingwei Hu, Jie Shen, Yingwei Wang. A Petrov-Galerkin spectral method for the inelastic Boltzmann equation using mapped Chebyshev functions. Kinetic & Related Models, 2020, 13 (4) : 677-702. doi: 10.3934/krm.2020023


Armando G. M. Neves. Upper and lower bounds on Mathieu characteristic numbers of integer orders. Communications on Pure & Applied Analysis, 2004, 3 (3) : 447-464. doi: 10.3934/cpaa.2004.3.447


Masao Fukushima. A class of gap functions for quasi-variational inequality problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 165-171. doi: 10.3934/jimo.2007.3.165


Zhong-Qing Wang, Ben-Yu Guo, Yan-Na Wu. Pseudospectral method using generalized Laguerre functions for singular problems on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1019-1038. doi: 10.3934/dcdsb.2009.11.1019

2019 Impact Factor: 1.105


  • PDF downloads (70)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]