This issuePrevious ArticleFlows of weakly compressible viscoelastic fluids through a regular bounded domain with inflow-outflow boundary conditionsNext ArticleBest constant of 3D Anisotropic Sobolev inequality and its applications
Center manifolds for nonuniform trichotomies and arbitrary growth rates
We consider linear equations $v'=A(t)v$ in a Banach space that may exhibit stable, unstable and central behaviors in different directions, with respect to arbitrary asymptotic rates $e^{c\rho(t)}$ determined by a function $\rho(t)$. The usual exponential behavior with $\rho(t)=t$ is included as a very special case. For other functions the Lyapunov exponents may be infinite (either $+\infty$ or $-\infty$), but we can still distinguish between different asymptotic rates. Our main objective is to establish the existence of center manifolds for a large class of nonlinear perturbations $v'=A(t)v+f(t,v)$ assuming that the linear equation has the above general asymptotic behavior. We also allow the stable, unstable and central components of $v'=A(t)v$ to exhibit a nonuniform exponential behavior. We emphasize that our results are new even in the very particular case of perturbations of uniform exponential trichotomies with arbitrary growth rates.