May  2010, 9(3): 655-666. doi: 10.3934/cpaa.2010.9.655

Best constant of 3D Anisotropic Sobolev inequality and its applications

1. 

School of Mathematics and Computer Science, Fujian Normal University, Fuzhou, 350007, China

Received  June 2009 Revised  October 2009 Published  January 2010

In this paper, we firstly determine the best constant of the three dimensional anisotropic Sobolev inequality [2]; then we use this best constant to investigate qualitative conditions for the uniform bound of the solution of the generalized Kadomtsev-Petviashvili (KP) I equation in three dimensions. The (KP) I equation is a model for the propagation of weakly nonlinear dispersive long waves on the surface of a fluid, when the wave motion is essentially one- directional and weak transverse effects are taken into account [11, 10]. Our results improve and optimize previous works [6, 12, 13, 14, 15].
Citation: Jianqing Chen. Best constant of 3D Anisotropic Sobolev inequality and its applications. Communications on Pure & Applied Analysis, 2010, 9 (3) : 655-666. doi: 10.3934/cpaa.2010.9.655
[1]

Nobu Kishimoto, Minjie Shan, Yoshio Tsutsumi. Global well-posedness and existence of the global attractor for the Kadomtsev-Petviashvili Ⅱ equation in the anisotropic Sobolev space. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1283-1307. doi: 10.3934/dcds.2020078

[2]

Wei Yan, Yimin Zhang, Yongsheng Li, Jinqiao Duan. Sharp well-posedness of the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili equation in anisotropic Sobolev spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (12) : 5825-5849. doi: 10.3934/dcds.2021097

[3]

Pedro Isaza, Juan López, Jorge Mejía. Cauchy problem for the fifth order Kadomtsev-Petviashvili (KPII) equation. Communications on Pure & Applied Analysis, 2006, 5 (4) : 887-905. doi: 10.3934/cpaa.2006.5.887

[4]

Hideo Takaoka. Global well-posedness for the Kadomtsev-Petviashvili II equation. Discrete & Continuous Dynamical Systems, 2000, 6 (2) : 483-499. doi: 10.3934/dcds.2000.6.483

[5]

Pedro Isaza, Jorge Mejía. On the support of solutions to the Kadomtsev-Petviashvili (KP-II) equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1239-1255. doi: 10.3934/cpaa.2011.10.1239

[6]

Anwar Ja'afar Mohamad Jawad, Mohammad Mirzazadeh, Anjan Biswas. Dynamics of shallow water waves with Gardner-Kadomtsev-Petviashvili equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1155-1164. doi: 10.3934/dcdss.2015.8.1155

[7]

Julián Fernández Bonder, Julio D. Rossi. Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains. Communications on Pure & Applied Analysis, 2002, 1 (3) : 359-378. doi: 10.3934/cpaa.2002.1.359

[8]

Yuanhong Wei, Yong Li, Xue Yang. On concentration of semi-classical solitary waves for a generalized Kadomtsev-Petviashvili equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1095-1106. doi: 10.3934/dcdss.2017059

[9]

Jiaxiang Cai, Juan Chen, Min Chen. Efficient linearized local energy-preserving method for the Kadomtsev-Petviashvili equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021139

[10]

Philippe Gravejat. Asymptotics of the solitary waves for the generalized Kadomtsev-Petviashvili equations. Discrete & Continuous Dynamical Systems, 2008, 21 (3) : 835-882. doi: 10.3934/dcds.2008.21.835

[11]

Anahita Eslami Rad, Enrique G. Reyes. The Kadomtsev-Petviashvili hierarchy and the Mulase factorization of formal Lie groups. Journal of Geometric Mechanics, 2013, 5 (3) : 345-364. doi: 10.3934/jgm.2013.5.345

[12]

Ezequiel R. Barbosa, Marcos Montenegro. On the geometric dependence of Riemannian Sobolev best constants. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1759-1777. doi: 10.3934/cpaa.2009.8.1759

[13]

Christian Klein, Ralf Peter. Numerical study of blow-up in solutions to generalized Kadomtsev-Petviashvili equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1689-1717. doi: 10.3934/dcdsb.2014.19.1689

[14]

Roger P. de Moura, Ailton C. Nascimento, Gleison N. Santos. On the stabilization for the high-order Kadomtsev-Petviashvili and the Zakharov-Kuznetsov equations with localized damping. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021022

[15]

Roland D. Barrolleta, Emilio Suárez-Canedo, Leo Storme, Peter Vandendriessche. On primitive constant dimension codes and a geometrical sunflower bound. Advances in Mathematics of Communications, 2017, 11 (4) : 757-765. doi: 10.3934/amc.2017055

[16]

YanYan Li, Tonia Ricciardi. A sharp Sobolev inequality on Riemannian manifolds. Communications on Pure & Applied Analysis, 2003, 2 (1) : 1-31. doi: 10.3934/cpaa.2003.2.1

[17]

Igor E. Verbitsky. The Hessian Sobolev inequality and its extensions. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 6165-6179. doi: 10.3934/dcds.2015.35.6165

[18]

Bernhard Kawohl. Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete & Continuous Dynamical Systems, 2000, 6 (3) : 683-690. doi: 10.3934/dcds.2000.6.683

[19]

Lele Du. Bounds for subcritical best Sobolev constants in W1, p. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021135

[20]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]