-
Previous Article
Localized BMO and BLO spaces on RD-spaces and applications to Schrödinger operators
- CPAA Home
- This Issue
-
Next Article
Estimates for extremal values of $-\Delta u= h(x) u^{q}+\lambda W(x) u^{p}$
Arbitrarily many solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity
1. | Department of mathematics, East China Normal University, 500 Dong Chuan Road, Shanghai 200241, China |
[1] |
Nicolas Dirr, Federica Dragoni, Max von Renesse. Evolution by mean curvature flow in sub-Riemannian geometries: A stochastic approach. Communications on Pure and Applied Analysis, 2010, 9 (2) : 307-326. doi: 10.3934/cpaa.2010.9.307 |
[2] |
Changfeng Gui, Huaiyu Jian, Hongjie Ju. Properties of translating solutions to mean curvature flow. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 441-453. doi: 10.3934/dcds.2010.28.441 |
[3] |
Satoshi Hashimoto, Mitsuharu Ôtani. Existence of nontrivial solutions for some elliptic equations with supercritical nonlinearity in exterior domains. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 323-333. doi: 10.3934/dcds.2007.19.323 |
[4] |
Kin Ming Hui. Existence of self-similar solutions of the inverse mean curvature flow. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 863-880. doi: 10.3934/dcds.2019036 |
[5] |
Chiara Corsato, Colette De Coster, Pierpaolo Omari. Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape. Conference Publications, 2015, 2015 (special) : 297-303. doi: 10.3934/proc.2015.0297 |
[6] |
Hongjie Ju, Jian Lu, Huaiyu Jian. Translating solutions to mean curvature flow with a forcing term in Minkowski space. Communications on Pure and Applied Analysis, 2010, 9 (4) : 963-973. doi: 10.3934/cpaa.2010.9.963 |
[7] |
Yuxia Guo, Jianjun Nie. Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6873-6898. doi: 10.3934/dcds.2016099 |
[8] |
Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4847-4885. doi: 10.3934/dcds.2021060 |
[9] |
Liselott Flodén, Jens Persson. Homogenization of nonlinear dissipative hyperbolic problems exhibiting arbitrarily many spatial and temporal scales. Networks and Heterogeneous Media, 2016, 11 (4) : 627-653. doi: 10.3934/nhm.2016012 |
[10] |
Manuel del Pino, Jean Dolbeault, Monica Musso. Multiple bubbling for the exponential nonlinearity in the slightly supercritical case. Communications on Pure and Applied Analysis, 2006, 5 (3) : 463-482. doi: 10.3934/cpaa.2006.5.463 |
[11] |
Jun Wang, Wei Wei, Jinju Xu. Translating solutions of non-parametric mean curvature flows with capillary-type boundary value problems. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3243-3265. doi: 10.3934/cpaa.2019146 |
[12] |
Alberto Farina, Miguel Angel Navarro. Some Liouville-type results for stable solutions involving the mean curvature operator: The radial case. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 1233-1256. doi: 10.3934/dcds.2020076 |
[13] |
Ruyun Ma, Man Xu. Connected components of positive solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2701-2718. doi: 10.3934/dcdsb.2018271 |
[14] |
Guowei Dai, Alfonso Romero, Pedro J. Torres. Global bifurcation of solutions of the mean curvature spacelike equation in certain standard static spacetimes. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3047-3071. doi: 10.3934/dcdss.2020118 |
[15] |
Alessio Pomponio. Oscillating solutions for prescribed mean curvature equations: euclidean and lorentz-minkowski cases. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3899-3911. doi: 10.3934/dcds.2018169 |
[16] |
Diego Castellaneta, Alberto Farina, Enrico Valdinoci. A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1983-2003. doi: 10.3934/cpaa.2012.11.1983 |
[17] |
Shao-Yuan Huang. Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3267-3284. doi: 10.3934/cpaa.2019147 |
[18] |
G. Kamberov. Prescribing mean curvature: existence and uniqueness problems. Electronic Research Announcements, 1998, 4: 4-11. |
[19] |
Giulio Colombo, Luciano Mari, Marco Rigoli. Remarks on mean curvature flow solitons in warped products. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1957-1991. doi: 10.3934/dcdss.2020153 |
[20] |
Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]