\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Nonlinear parabolic equations with a lower order term and $L^1$ data

Abstract Related Papers Cited by
  • In this paper we prove the existence of a renormalized solution for a class of nonlinear parabolic problems whose prototype is

    $\frac{\partial u}{\partial t}-\Delta_p u+$ div $(c(x,t)|u|^{\gamma-1}u) =f $ in $Q_T$

    $u(x,t)=0$ on $\partial\Omega\times(0,T) $

    $u(x,0)=u_0 (x)$ in $\Omega,$

    where $Q_T=\Omega\times(0,T),$ $\Omega$ is an open and bounded subset of $ \mathcal{R} ^N$, $N\geq2,$ $T>0,$ $\Delta_p$ is the so called $p$-Laplace operator, $\gamma=\frac{(N+2)(p-1)}{N+p},$ $c(x,t)\in(L^{\tau }(Q_{T}))^N,$ $\tau=\frac{N+p}{p-1},$ $\ f\in L^1 (Q_T), $ $u_{0}\in L^1(\Omega).$

    Mathematics Subject Classification: Primary: 35K60; Secondary: 35D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(132) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return