January  2011, 10(1): 1-44. doi: 10.3934/cpaa.2011.10.1

Analysis of the Laplacian and spectral operators on the Vicsek set

1. 

Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton NJ 08544-1000, USA Government

2. 

Mathematics Department, Malott Hall, Cornell Univeristy, Ithaca, NY 14853, United States

3. 

Department of Mathematics, Brown University, Box 1917, Providence, RI 02912, USA Government

Received  January 2010 Revised  April 2010 Published  November 2010

We study the spectral decomposition of the Laplacian on a family of fractals $\mathcal{VS}_n$ that includes the Vicsek set for $n=2$, extending earlier research on the Sierpinski Gasket. We implement an algorithm [23] for spectral decimation of eigenfunctions of the Laplacian, and explicitly compute these eigenfunctions and some of their properties. We give an algorithm for computing inner products of eigenfunctions. We explicitly compute solutions to the heat equation and wave equation for Neumann boundary conditions. We study gaps in the ratios of eigenvalues and eigenvalue clusters. We give an explicit formula for the Green's function on $\mathcal{VS}_n$. Finally, we explain how the spectrum of the Laplacian on $\mathcal{VS}_n$ converges as $n \to \infty$ to the spectrum of the Laplacian on two crossed lines (the limit of the sets $\mathcal{VS}_n$.)
Citation: Sarah Constantin, Robert S. Strichartz, Miles Wheeler. Analysis of the Laplacian and spectral operators on the Vicsek set. Communications on Pure & Applied Analysis, 2011, 10 (1) : 1-44. doi: 10.3934/cpaa.2011.10.1
References:
[1]

Bryant Adams, S. Alex Smith, Robert S. Strichartz and Alexander Teplyaev, The spectrum of the Laplacian on the pentagasket,, Fractals in Graz 2001, (2001), 1.   Google Scholar

[2]

Adam Allan, Michael Barany and Robert S. Strichartz, Spectral operators on the Sierpinski gasket I,, Complex variables and elliptic operators, 54 (2009), 521.   Google Scholar

[3]

Tyrus Berry, Steven Heilman and Robert S. Strichartz, Outer approximation of the spectrum of a fractal Laplacian,, Experimental Mathematics, 18 (2009), 449.   Google Scholar

[4]

Brian Bockelman and Robert S. Strichartz, Partial differential equations on products of Sierpinski gaskets,, Indiana Univ. Math. J., 56 (2007), 1361.  doi: doi:10.1512/iumj.2007.56.2981.  Google Scholar

[5]

Kevin Coletta, Kealey Dias and Robert S. Strichartz, Numerical analysis on the Sierpinski gasket, with applications to Schrödinger equations, wave equation, and Gibbs' phenomenon,, Fractals, 12 (2004), 413.  doi: doi:10.1142/S0218348X04002689.  Google Scholar

[6]

Sarah Constantin, Robert S. Strichartz and Wheeler Miles, Spectral operators on vicsek sets,, 2009, ().   Google Scholar

[7]

Kyallee Dalrymple, Robert S. Strichartz and Jade P. Vinson, Fractal differential equations on the Sierpinski gasket,, J. Fourier Anal. Appl., 5 (1999), 203.  doi: doi:10.1007/BF01261610.  Google Scholar

[8]

S. Drenning and Robert S. Strichartz, Spectral decimation on Hambly's homogeneous, hierarchical gaskets,, Ill. J. Math., 53 (2009), 915.   Google Scholar

[9]

Xuan Thinh Duong, El Maati Ouhabaz and Adam Sikora, Plancherel-type estimates and sharp spectral multipliers,, J. Funct. Anal., 196 (2002), 443.  doi: doi:10.1016/S0022-1236(02)00009-5.  Google Scholar

[10]

Taryn Flock and Robsert S. Strichartz, Laplacians on a family of quadratic Julia sets,, Trans. Amer. Math. Soc., ().   Google Scholar

[11]

M. Fukushima and T. Shima, On a spectral analysis for the Sierpiński gasket,, Potential Anal., 1 (1992), 1.  doi: doi:10.1007/BF00249784.  Google Scholar

[12]

Peter J. Grabner and Wolfgang Woess, Functional iterations and periodic oscillations for simple random walk on the Sierpiński graph,, Stochastic Process. Appl., 69 (1997), 127.  doi: doi:10.1016/S0304-4149(97)00033-1.  Google Scholar

[13]

A. Grigor'yan and L. Saloff-Coste, Heat kernels on manifolds with ends,, Ann. Inst. Fourier, 59 (2009), 1917.   Google Scholar

[14]

Kathryn E. Hare and Denglin Zhou, Gaps in the ratios of the spectrum of Laplacians on fractals,, Fractals, 17 (2009), 523.  doi: doi:10.1142/S0218348X0900451X.  Google Scholar

[15]

Jun Kigami, "Analysis on Fractals,", Cambridge Tracts in Mathematics, (2001).   Google Scholar

[16]

Jun Kigami and Michel L. Lapidus, Weyl's problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals,, Comm. Math. Phys., 158 (1993), 93.  doi: doi:10.1007/BF02097233.  Google Scholar

[17]

Richard Oberlin, Brian Street and Robert S. Strichartz, Sampling on the Sierpinski gasket,, Experiment. Math., 12 (2003), 403.   Google Scholar

[18]

Adam Sikora, Multivariable spectral multipliers and analysis of quasielliptic operators on fractals,, Indiana Univ. Math. J., 58 (2009), 317.  doi: doi:10.1512/iumj.2009.58.3745.  Google Scholar

[19]

Elias M. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton Mathematical Series, (1970).   Google Scholar

[20]

Robert S. Strichartz, Laplacians on fractals with spectral gaps have nicer Fourier series,, Math. Res. Lett., 12 (2005), 269.   Google Scholar

[21]

Robert S. Strichartz, "Differential Equations on Fractals: A Tutorial,", Princeton University Press, (2006).   Google Scholar

[22]

Alexander Teplyaev, Spectral analysis on infinite Sierpiński gaskets,, J. Funct. Anal., 159 (1998), 537.  doi: doi:10.1006/jfan.1998.3297.  Google Scholar

[23]

Denglin Zhou, Spectral analysis of Laplacians on the Vicsek set,, Pacific J. Math., 241 (2009), 369.  doi: doi:10.2140/pjm.2009.241.369.  Google Scholar

show all references

References:
[1]

Bryant Adams, S. Alex Smith, Robert S. Strichartz and Alexander Teplyaev, The spectrum of the Laplacian on the pentagasket,, Fractals in Graz 2001, (2001), 1.   Google Scholar

[2]

Adam Allan, Michael Barany and Robert S. Strichartz, Spectral operators on the Sierpinski gasket I,, Complex variables and elliptic operators, 54 (2009), 521.   Google Scholar

[3]

Tyrus Berry, Steven Heilman and Robert S. Strichartz, Outer approximation of the spectrum of a fractal Laplacian,, Experimental Mathematics, 18 (2009), 449.   Google Scholar

[4]

Brian Bockelman and Robert S. Strichartz, Partial differential equations on products of Sierpinski gaskets,, Indiana Univ. Math. J., 56 (2007), 1361.  doi: doi:10.1512/iumj.2007.56.2981.  Google Scholar

[5]

Kevin Coletta, Kealey Dias and Robert S. Strichartz, Numerical analysis on the Sierpinski gasket, with applications to Schrödinger equations, wave equation, and Gibbs' phenomenon,, Fractals, 12 (2004), 413.  doi: doi:10.1142/S0218348X04002689.  Google Scholar

[6]

Sarah Constantin, Robert S. Strichartz and Wheeler Miles, Spectral operators on vicsek sets,, 2009, ().   Google Scholar

[7]

Kyallee Dalrymple, Robert S. Strichartz and Jade P. Vinson, Fractal differential equations on the Sierpinski gasket,, J. Fourier Anal. Appl., 5 (1999), 203.  doi: doi:10.1007/BF01261610.  Google Scholar

[8]

S. Drenning and Robert S. Strichartz, Spectral decimation on Hambly's homogeneous, hierarchical gaskets,, Ill. J. Math., 53 (2009), 915.   Google Scholar

[9]

Xuan Thinh Duong, El Maati Ouhabaz and Adam Sikora, Plancherel-type estimates and sharp spectral multipliers,, J. Funct. Anal., 196 (2002), 443.  doi: doi:10.1016/S0022-1236(02)00009-5.  Google Scholar

[10]

Taryn Flock and Robsert S. Strichartz, Laplacians on a family of quadratic Julia sets,, Trans. Amer. Math. Soc., ().   Google Scholar

[11]

M. Fukushima and T. Shima, On a spectral analysis for the Sierpiński gasket,, Potential Anal., 1 (1992), 1.  doi: doi:10.1007/BF00249784.  Google Scholar

[12]

Peter J. Grabner and Wolfgang Woess, Functional iterations and periodic oscillations for simple random walk on the Sierpiński graph,, Stochastic Process. Appl., 69 (1997), 127.  doi: doi:10.1016/S0304-4149(97)00033-1.  Google Scholar

[13]

A. Grigor'yan and L. Saloff-Coste, Heat kernels on manifolds with ends,, Ann. Inst. Fourier, 59 (2009), 1917.   Google Scholar

[14]

Kathryn E. Hare and Denglin Zhou, Gaps in the ratios of the spectrum of Laplacians on fractals,, Fractals, 17 (2009), 523.  doi: doi:10.1142/S0218348X0900451X.  Google Scholar

[15]

Jun Kigami, "Analysis on Fractals,", Cambridge Tracts in Mathematics, (2001).   Google Scholar

[16]

Jun Kigami and Michel L. Lapidus, Weyl's problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals,, Comm. Math. Phys., 158 (1993), 93.  doi: doi:10.1007/BF02097233.  Google Scholar

[17]

Richard Oberlin, Brian Street and Robert S. Strichartz, Sampling on the Sierpinski gasket,, Experiment. Math., 12 (2003), 403.   Google Scholar

[18]

Adam Sikora, Multivariable spectral multipliers and analysis of quasielliptic operators on fractals,, Indiana Univ. Math. J., 58 (2009), 317.  doi: doi:10.1512/iumj.2009.58.3745.  Google Scholar

[19]

Elias M. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton Mathematical Series, (1970).   Google Scholar

[20]

Robert S. Strichartz, Laplacians on fractals with spectral gaps have nicer Fourier series,, Math. Res. Lett., 12 (2005), 269.   Google Scholar

[21]

Robert S. Strichartz, "Differential Equations on Fractals: A Tutorial,", Princeton University Press, (2006).   Google Scholar

[22]

Alexander Teplyaev, Spectral analysis on infinite Sierpiński gaskets,, J. Funct. Anal., 159 (1998), 537.  doi: doi:10.1006/jfan.1998.3297.  Google Scholar

[23]

Denglin Zhou, Spectral analysis of Laplacians on the Vicsek set,, Pacific J. Math., 241 (2009), 369.  doi: doi:10.2140/pjm.2009.241.369.  Google Scholar

[1]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[2]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[3]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[4]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[5]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[6]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[7]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[10]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[11]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[12]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[13]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[14]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[15]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[16]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[17]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[18]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[19]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[20]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (8)

[Back to Top]