July  2011, 10(4): 1037-1054. doi: 10.3934/cpaa.2011.10.1037

Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents

1. 

Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, PO Box 71010, Wuhan 430071E01103, China

2. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084e/pjp, China

3. 

Department of Mathematics, South China University of Technology, Guangzhou 510640, China

Received  April 2010 Revised  September 2010 Published  April 2011

By using a change of variable, the quasilinear Schrödinger equation is reduced to semilinear elliptic equation. Then, Mountain Pass theorem without $(PS)_c$ condition in a suitable Orlicz space is employed to prove the existence of positive standing wave solutions for a class of quasilinear Schrödinger equations involving critical Sobolev-Hardy exponents.
Citation: Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037
References:
[1]

C. O. Alves, J. M. do Ó and O. Miyagaki, On nonlinear perturbations of a periodic elliptic problem in $\mathbbR^2$ involving critical growth,, Nonlinear Anal., 56 (2004), 781.  doi: 10.1016/j.na.2003.06.003.  Google Scholar

[2]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equations: A dual approach,, Nonlinear Anal., 56 (2004), 213.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[3]

J. M. do Ó, O. Miyagaki and S. Soares, Soliton solutions for quasilinear Schrödinger equations:the critical exponential case,, Nonlinear Anal., 67 (2007), 3357.  doi: 10.1016/j.na.2006.10.018.  Google Scholar

[4]

J. M. do Ó and U. Severo, Quasilinear Schrödinger equations involving concave and convex nonlinearities,, Comm. Pure and Applied Anal., 8 (2009), 621.  doi: 10.3934/cpaa.2009.8.621.  Google Scholar

[5]

A. Floer and A. Weisntein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,, J. Funct. Anal., 69 (1986), 397.  doi: 10.1016/0022-1236(86)90096-0.  Google Scholar

[6]

N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents,, Trans. Amer. Math. Soc., 352 (2000), 5703.  doi: 10.1090/S0002-9947-00-02560-5.  Google Scholar

[7]

R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations,, Z. Phys. B, 37 (1980), 83.  doi: 10.1007/BF01325508.  Google Scholar

[8]

D. Sh. Kang, Solutions for semilinear elliptic problems with critical Sobolev-Hardy exponents in $\mathbbR^N$,, Nonlinear Anal., 66 (2007).  doi: 10.1016/j.na.2005.11.028.  Google Scholar

[9]

A. M. Kosevich, B. A. Ivanov and A. S. Kovalev, Magnetic solitons,, Phys. Rep., 194 (1990), 117.  doi: 10.1016/0370-1573(90)90130-T.  Google Scholar

[10]

S. Kurihura, Large-amplitude quasi-solitons in superfluid films,, J. Phys. Soc. Japan, 50 (1981), 3262.  doi: 10.1143/jpsj.50.3262.  Google Scholar

[11]

E. W. Laedke, K. H. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions,, J. Math. Phys., 24 (1983), 2764.  doi: 10.1063/1.525675.  Google Scholar

[12]

A. G. Litvak and A. M. Sergeev, One dimensional collapse of plasma waves,, JETP Lett., 27 (1978), 517.  doi: 0021-3640778/2710-0517.  Google Scholar

[13]

J. Q. Liu, Y. Q. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method,, Comm. Partial Differential Equations, 29 (2004), 879.  doi: 10.1081/PDE-120037335.  Google Scholar

[14]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations I,, Proc. Amer. Math. Soc., 131 (2002), 441.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[15]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations II,, J. Differential Equations, 187 (2003), 473.  doi: 10.1016/s0022-0396(02)0064-5.  Google Scholar

[16]

V. G. Makhankov and V. K. Fedyanin, Non-linear effects in quasi-one-dimensional models of condensed matter theory,, Phys. Rep, 104 (1984), 1.  doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[17]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Springer-Verlag, (1989).   Google Scholar

[18]

O. H. Miyagaki, On a class of semilinear elliptic problems in $\mathbbR^N$ with critical growth,, Nonlinear Anal., 29 (1997), 773.  doi: 10.1016/s0362-546x(96)00087-9.  Google Scholar

[19]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $\mathbbR^N$,, J. Differential Equations, 229 (2006), 570.  doi: 10.1016/j.jde.2006.07.001.  Google Scholar

[20]

A. Moameni, On the existence of standing wave solutions to quasilinear Schrödinger equations,, Nonlinearity, 19 (2006), 937.  doi: 10.1088/0951-7715/19/4/009.  Google Scholar

[21]

M. Poppenberg, K. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, Calc. Var. Partial Differential Equations \textbf{14} (2002), 14 (2002), 329.  doi: 10.1007/s005260100105.  Google Scholar

[22]

G. R. W. Quispel and H. W. Capel, Equation of motion for the Heisenberg spin chain,, Physica A, 110 (1982), 41.  doi: 10.1016/0378-4371(82)90104-2.  Google Scholar

[23]

S. Takeno and S. Homma, Classical planar Heisenberg ferromagnet, complex scalar fields and nonlinear excitations,, Progr. Theoret. Phys., 65 (1981), 172.  doi: 10.1143/PTP.65.172.  Google Scholar

[24]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations,, Z angew Math. Phy., 43 (1992), 272.  doi: 10.1007/BF00946631.  Google Scholar

[25]

Y. J. Wang, J. Yang and Y. M. Zhang, Quasilinear elliptic equations involving the N-Laplacian with critical exponential growth in $\mathbbR^N$,, Nonlinear Anal., 71 (2009), 6157.  doi: 10.1016/j.na.2009.06.006.  Google Scholar

[26]

Y. J. Wang, Y. M. Zhang and Y. T. Shen, Multiple solutions for quasilinear Schröinger equations involving critical exponent,, Applied Mathematics and Computation, 216 (2010), 849.  doi: 10.1016/j.amc.2010.01.091.  Google Scholar

show all references

References:
[1]

C. O. Alves, J. M. do Ó and O. Miyagaki, On nonlinear perturbations of a periodic elliptic problem in $\mathbbR^2$ involving critical growth,, Nonlinear Anal., 56 (2004), 781.  doi: 10.1016/j.na.2003.06.003.  Google Scholar

[2]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equations: A dual approach,, Nonlinear Anal., 56 (2004), 213.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[3]

J. M. do Ó, O. Miyagaki and S. Soares, Soliton solutions for quasilinear Schrödinger equations:the critical exponential case,, Nonlinear Anal., 67 (2007), 3357.  doi: 10.1016/j.na.2006.10.018.  Google Scholar

[4]

J. M. do Ó and U. Severo, Quasilinear Schrödinger equations involving concave and convex nonlinearities,, Comm. Pure and Applied Anal., 8 (2009), 621.  doi: 10.3934/cpaa.2009.8.621.  Google Scholar

[5]

A. Floer and A. Weisntein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,, J. Funct. Anal., 69 (1986), 397.  doi: 10.1016/0022-1236(86)90096-0.  Google Scholar

[6]

N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents,, Trans. Amer. Math. Soc., 352 (2000), 5703.  doi: 10.1090/S0002-9947-00-02560-5.  Google Scholar

[7]

R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations,, Z. Phys. B, 37 (1980), 83.  doi: 10.1007/BF01325508.  Google Scholar

[8]

D. Sh. Kang, Solutions for semilinear elliptic problems with critical Sobolev-Hardy exponents in $\mathbbR^N$,, Nonlinear Anal., 66 (2007).  doi: 10.1016/j.na.2005.11.028.  Google Scholar

[9]

A. M. Kosevich, B. A. Ivanov and A. S. Kovalev, Magnetic solitons,, Phys. Rep., 194 (1990), 117.  doi: 10.1016/0370-1573(90)90130-T.  Google Scholar

[10]

S. Kurihura, Large-amplitude quasi-solitons in superfluid films,, J. Phys. Soc. Japan, 50 (1981), 3262.  doi: 10.1143/jpsj.50.3262.  Google Scholar

[11]

E. W. Laedke, K. H. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions,, J. Math. Phys., 24 (1983), 2764.  doi: 10.1063/1.525675.  Google Scholar

[12]

A. G. Litvak and A. M. Sergeev, One dimensional collapse of plasma waves,, JETP Lett., 27 (1978), 517.  doi: 0021-3640778/2710-0517.  Google Scholar

[13]

J. Q. Liu, Y. Q. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method,, Comm. Partial Differential Equations, 29 (2004), 879.  doi: 10.1081/PDE-120037335.  Google Scholar

[14]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations I,, Proc. Amer. Math. Soc., 131 (2002), 441.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[15]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations II,, J. Differential Equations, 187 (2003), 473.  doi: 10.1016/s0022-0396(02)0064-5.  Google Scholar

[16]

V. G. Makhankov and V. K. Fedyanin, Non-linear effects in quasi-one-dimensional models of condensed matter theory,, Phys. Rep, 104 (1984), 1.  doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[17]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Springer-Verlag, (1989).   Google Scholar

[18]

O. H. Miyagaki, On a class of semilinear elliptic problems in $\mathbbR^N$ with critical growth,, Nonlinear Anal., 29 (1997), 773.  doi: 10.1016/s0362-546x(96)00087-9.  Google Scholar

[19]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $\mathbbR^N$,, J. Differential Equations, 229 (2006), 570.  doi: 10.1016/j.jde.2006.07.001.  Google Scholar

[20]

A. Moameni, On the existence of standing wave solutions to quasilinear Schrödinger equations,, Nonlinearity, 19 (2006), 937.  doi: 10.1088/0951-7715/19/4/009.  Google Scholar

[21]

M. Poppenberg, K. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, Calc. Var. Partial Differential Equations \textbf{14} (2002), 14 (2002), 329.  doi: 10.1007/s005260100105.  Google Scholar

[22]

G. R. W. Quispel and H. W. Capel, Equation of motion for the Heisenberg spin chain,, Physica A, 110 (1982), 41.  doi: 10.1016/0378-4371(82)90104-2.  Google Scholar

[23]

S. Takeno and S. Homma, Classical planar Heisenberg ferromagnet, complex scalar fields and nonlinear excitations,, Progr. Theoret. Phys., 65 (1981), 172.  doi: 10.1143/PTP.65.172.  Google Scholar

[24]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations,, Z angew Math. Phy., 43 (1992), 272.  doi: 10.1007/BF00946631.  Google Scholar

[25]

Y. J. Wang, J. Yang and Y. M. Zhang, Quasilinear elliptic equations involving the N-Laplacian with critical exponential growth in $\mathbbR^N$,, Nonlinear Anal., 71 (2009), 6157.  doi: 10.1016/j.na.2009.06.006.  Google Scholar

[26]

Y. J. Wang, Y. M. Zhang and Y. T. Shen, Multiple solutions for quasilinear Schröinger equations involving critical exponent,, Applied Mathematics and Computation, 216 (2010), 849.  doi: 10.1016/j.amc.2010.01.091.  Google Scholar

[1]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[2]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[3]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[4]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[5]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[6]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[7]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[8]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[9]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[10]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[11]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[12]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[13]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[14]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[15]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[16]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[17]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[18]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[19]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[20]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]