July  2011, 10(4): 1055-1078. doi: 10.3934/cpaa.2011.10.1055

Nonlinear Neumann equations driven by a nonhomogeneous differential operator

1. 

College of Mathematics, Shandong Normal University, Jinan, Shandong

2. 

Department of Mathematics, National Technical University of Athens, Zografou Campus, Athens 15780

Received  January 2010 Revised  November 2010 Published  April 2011

We consider a nonlinear Neumann problem driven by a nonhomogeneous nonlinear differential operator and with a reaction which is $(p-1)$-superlinear without necessarily satisfying the Ambrosetti-Rabinowitz condition. A particular case of our differential operator is the $p$-Laplacian. By combining variational methods based on critical point theory with truncation techniques and Morse theory, we show that the problem has at least three nontrivial smooth solutions, two of which have constant sign (one positive and the other negative).
Citation: Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann equations driven by a nonhomogeneous differential operator. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1055-1078. doi: 10.3934/cpaa.2011.10.1055
References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, "Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equations with Inequality Constraints,", Memoirs of AMS, (2008).   Google Scholar

[2]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Existence of multiple solutions with precise sign information for superlinear Neumann problems,, Annali di Mat Pura Appl., 188 (2009), 679.  doi: doi:10.1007/s10231-009-0096-7.  Google Scholar

[3]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, The spectrum and an index formula for the Neumann $p$-Laplacian and multiple solutions for problems with a crossing nonlinearity,, Discrete Contin. Dynamical Systems, 25 (2009), 431.   Google Scholar

[4]

P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity,, Nonlin. Anal., 7 (1983), 981.  doi: doi:10.1016/0362-546X(83)90115-3.  Google Scholar

[5]

T. Bartsch and S. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance,, Nonlin. Anal., 28 (1997), 419.  doi: doi:10.1016/0362-546X(95)00167-T.  Google Scholar

[6]

H. Brezis and Louis Nirenberg, $H^1$-versus $C^1$ local minimizers,, CRAS Paris, 317 (1993), 465.   Google Scholar

[7]

S. Carl and K. Perera, Sign-changing and multiple solutions for the $p$-Laplacian,, Abstr. Appl. Anal., 7 (2002), 613.  doi: doi:10.1155/S1085337502207010.  Google Scholar

[8]

E. Casas and L. Fernandez, A Green's formula for quasilinear elliptic operators,, J. Math. Anal. Appl., 142 (1989), 62.  doi: doi:10.1016/0022-247X(89)90164-9.  Google Scholar

[9]

K. C. Chang, "Infinite Dimensional Morse theory and Multiple Solution Problems,", Birkhauser, (1993).   Google Scholar

[10]

J. A. Cid and P. J. Torres, Solvability for some boundary value problems with $p$-Laplacian operators,, Discrete Contin. Dynamical Systems, 23 (2009), 727.   Google Scholar

[11]

D. Costa and C. Magalhaes, Existence results for perturbations of the $p$-Laplacian,, Nonlinear Anal., 24 (1995), 409.  doi: doi:10.1016/0362-546X(94)E0046-J.  Google Scholar

[12]

L. Damascellli, Comparision theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results,, Ann. Inst. H. Poincare Analyse Non linenire, 15 (1998), 493.   Google Scholar

[13]

N. Dancer and K. Perera, Some remarks on the Fučik spectrum of the $p$-Laplacian and critical groups,, J. Math. Anal. Appl., 254 (2001), 164.  doi: doi:10.1006/jmaa.2000.7228.  Google Scholar

[14]

P. De Mapoli and C. Mariani, Mountain pass solutions to equations of $p$-Laplacian type,, Nonlinear Anal., 54 (2003), 1205.  doi: doi:10.1016/S0362-546X(03)00105-6.  Google Scholar

[15]

F. de Paiva and H. R. Quoirin, Resonance and nonresonance for $p$-Laplacian problems with weighted eigenvalues conditions,, Discrete Contin. Dynamical Systems, 25 (2009), 1219.   Google Scholar

[16]

G. Fei, On periodic solutions of superquadratic Hamiltonian systems,, Electronic J. Diff. Equas., 8 (2002), 1.   Google Scholar

[17]

M. Filippakis, A. Kristaly and N. S. Papageorgiou, Existence of five nontrivial solutions with precise sign data for a $p$-Laplacian equation,, Discrete Contin. Dynamical Systems, 25 (2009), 405.   Google Scholar

[18]

J. Garcia Azorero, J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quarsilinear elliptic equations,, Comm. Contemp. Math., 2 (2000), 385.   Google Scholar

[19]

L. Gasinski and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Elliptic Boundary Value Problems,", Chapman & Hall / CRC Press, (2005).   Google Scholar

[20]

L. Gasinski and N. S. Papageorgiou, "Nonlinear Analysis,", Chapman & Hall/CRC, (2006).   Google Scholar

[21]

L. Gasinski and N. S. Papageorgiou, Existence and multiplicity of solutions for Neumann $p$-Laplacian type equations,, Adv. Nonlin. Studies, 8 (2008), 843.   Google Scholar

[22]

A. Granas and J. Dugundji, "Fixed Point Theory,", Springer, (2003).   Google Scholar

[23]

Z. Guo and Z. Zhang, $W^{1,p}$ versus $C^1$ local minimizers and multiplicity results for quasilinear elliptic equations,, J. Math. Anal. Anal., 286 (2003), 32.  doi: doi:10.1016/S0022-247X(03)00282-8.  Google Scholar

[24]

A. Kristaly, H. Lisei and C. Varga, Multiple solutions for $p$-Laplacian type equations,, Nonlinear Anal., 68 (2008), 1375.  doi: doi:10.1016/j.na.2006.12.031.  Google Scholar

[25]

O. Ladyzhenskaya and N. Uraltseva, "Linear and Quasilinear Elliptic Equations,", Acad. Press., (1968).   Google Scholar

[26]

G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations,, Nonlinear Anal., 12 (1988), 1203.  doi: doi:10.1016/0362-546X(88)90053-3.  Google Scholar

[27]

S. Liu, Multiple solutions for coercive $p$-Laplacian equations,, J. Math. Anal. Appl., 316 (2006), 229.  doi: doi:10.1016/j.jmaa.2005.04.034.  Google Scholar

[28]

J. Liu and S. Liu, The existence of multiple solutions to quasilinear elliptic equations,, Bull. London Math. Soc., 37 (2005), 592.  doi: doi:10.1112/S0024609304004023.  Google Scholar

[29]

M. Montenegro, Strong maximum principles for supersolutions of quasilinear elliptic equations,, Nonlinear Anal., 37 (1991), 431.  doi: doi:10.1016/S0362-546X(98)00057-1.  Google Scholar

[30]

D. Motreanu and N. S. Papageorgiou, Existence and multiplicity of solutions for Neumann problems,, J. Differential Eqns., 232 (2007), 1.  doi: doi:10.1016/j.jde.2006.09.008.  Google Scholar

[31]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Nonlinear Neumann problems near resonance,, Indiana Univ. Math. J., 58 (2009), 1257.  doi: doi:10.1512/iumj.2009.58.3565.  Google Scholar

[32]

N. S. Papageorgiou and S. Th. Kyritsi, "Handbook of Applied Analysis,", Springer, (2009).   Google Scholar

[33]

E. Papageorgiou and N. S. Papageorgiou, A multiplicity theorem for problems with the $p$-Laplacian,, J. Funct. Anal., 244 (2007), 63.  doi: doi:10.1016/j.jfa.2006.11.015.  Google Scholar

[34]

E. Papageorgiou and N. S. Papageorgiou, Multiplicity of solutions for a class of resonant $p$-Laplacian Dirichlet problems,, Pacific J. Math., 241 (2009), 309.  doi: doi:10.2140/pjm.2009.241.309.  Google Scholar

[35]

N. S. Papageorgiou, E. M. Rocha and V. Staicu, A multiplicity theorem for hemivariational inequalities with a $p$-Laplacian-like differential operator,, Nonlin. Anal., 69 (2008), 1150.  doi: doi:10.1016/j.na.2007.06.023.  Google Scholar

[36]

N. S. Trudinger and XuJia Wang, Quasilinear elliptic equations with signed measure,, Discrete Contin. Dynamical Systems, 23 (2009), 477.   Google Scholar

[37]

Z. Q. Wang, On a superlinear elliptic equation,, Ann. Inst. H. Poincare Analyse Non Lineaire, 8 (1991), 43.   Google Scholar

[38]

M. Willem, "Minimax Theorems,", Birkhauser, (1996).   Google Scholar

[39]

Q. Zhang, A strong maximum principle for differential equations with nonstandard $p(x)$-growth condition,, J. Math. Anal. Appl., 312 (2005), 24.  doi: doi:10.1016/j.jmaa.2005.03.013.  Google Scholar

[40]

Z. Zhang, J. Q. Chen and S. Li, Construction of pseudo-gradient vector field and sign-changing multiple solutions involving $p$-Laplacian,, J. Differential Eqns., 201 (2004), 287.  doi: doi:10.1016/j.jde.2004.03.019.  Google Scholar

show all references

References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, "Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equations with Inequality Constraints,", Memoirs of AMS, (2008).   Google Scholar

[2]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Existence of multiple solutions with precise sign information for superlinear Neumann problems,, Annali di Mat Pura Appl., 188 (2009), 679.  doi: doi:10.1007/s10231-009-0096-7.  Google Scholar

[3]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, The spectrum and an index formula for the Neumann $p$-Laplacian and multiple solutions for problems with a crossing nonlinearity,, Discrete Contin. Dynamical Systems, 25 (2009), 431.   Google Scholar

[4]

P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity,, Nonlin. Anal., 7 (1983), 981.  doi: doi:10.1016/0362-546X(83)90115-3.  Google Scholar

[5]

T. Bartsch and S. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance,, Nonlin. Anal., 28 (1997), 419.  doi: doi:10.1016/0362-546X(95)00167-T.  Google Scholar

[6]

H. Brezis and Louis Nirenberg, $H^1$-versus $C^1$ local minimizers,, CRAS Paris, 317 (1993), 465.   Google Scholar

[7]

S. Carl and K. Perera, Sign-changing and multiple solutions for the $p$-Laplacian,, Abstr. Appl. Anal., 7 (2002), 613.  doi: doi:10.1155/S1085337502207010.  Google Scholar

[8]

E. Casas and L. Fernandez, A Green's formula for quasilinear elliptic operators,, J. Math. Anal. Appl., 142 (1989), 62.  doi: doi:10.1016/0022-247X(89)90164-9.  Google Scholar

[9]

K. C. Chang, "Infinite Dimensional Morse theory and Multiple Solution Problems,", Birkhauser, (1993).   Google Scholar

[10]

J. A. Cid and P. J. Torres, Solvability for some boundary value problems with $p$-Laplacian operators,, Discrete Contin. Dynamical Systems, 23 (2009), 727.   Google Scholar

[11]

D. Costa and C. Magalhaes, Existence results for perturbations of the $p$-Laplacian,, Nonlinear Anal., 24 (1995), 409.  doi: doi:10.1016/0362-546X(94)E0046-J.  Google Scholar

[12]

L. Damascellli, Comparision theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results,, Ann. Inst. H. Poincare Analyse Non linenire, 15 (1998), 493.   Google Scholar

[13]

N. Dancer and K. Perera, Some remarks on the Fučik spectrum of the $p$-Laplacian and critical groups,, J. Math. Anal. Appl., 254 (2001), 164.  doi: doi:10.1006/jmaa.2000.7228.  Google Scholar

[14]

P. De Mapoli and C. Mariani, Mountain pass solutions to equations of $p$-Laplacian type,, Nonlinear Anal., 54 (2003), 1205.  doi: doi:10.1016/S0362-546X(03)00105-6.  Google Scholar

[15]

F. de Paiva and H. R. Quoirin, Resonance and nonresonance for $p$-Laplacian problems with weighted eigenvalues conditions,, Discrete Contin. Dynamical Systems, 25 (2009), 1219.   Google Scholar

[16]

G. Fei, On periodic solutions of superquadratic Hamiltonian systems,, Electronic J. Diff. Equas., 8 (2002), 1.   Google Scholar

[17]

M. Filippakis, A. Kristaly and N. S. Papageorgiou, Existence of five nontrivial solutions with precise sign data for a $p$-Laplacian equation,, Discrete Contin. Dynamical Systems, 25 (2009), 405.   Google Scholar

[18]

J. Garcia Azorero, J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quarsilinear elliptic equations,, Comm. Contemp. Math., 2 (2000), 385.   Google Scholar

[19]

L. Gasinski and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Elliptic Boundary Value Problems,", Chapman & Hall / CRC Press, (2005).   Google Scholar

[20]

L. Gasinski and N. S. Papageorgiou, "Nonlinear Analysis,", Chapman & Hall/CRC, (2006).   Google Scholar

[21]

L. Gasinski and N. S. Papageorgiou, Existence and multiplicity of solutions for Neumann $p$-Laplacian type equations,, Adv. Nonlin. Studies, 8 (2008), 843.   Google Scholar

[22]

A. Granas and J. Dugundji, "Fixed Point Theory,", Springer, (2003).   Google Scholar

[23]

Z. Guo and Z. Zhang, $W^{1,p}$ versus $C^1$ local minimizers and multiplicity results for quasilinear elliptic equations,, J. Math. Anal. Anal., 286 (2003), 32.  doi: doi:10.1016/S0022-247X(03)00282-8.  Google Scholar

[24]

A. Kristaly, H. Lisei and C. Varga, Multiple solutions for $p$-Laplacian type equations,, Nonlinear Anal., 68 (2008), 1375.  doi: doi:10.1016/j.na.2006.12.031.  Google Scholar

[25]

O. Ladyzhenskaya and N. Uraltseva, "Linear and Quasilinear Elliptic Equations,", Acad. Press., (1968).   Google Scholar

[26]

G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations,, Nonlinear Anal., 12 (1988), 1203.  doi: doi:10.1016/0362-546X(88)90053-3.  Google Scholar

[27]

S. Liu, Multiple solutions for coercive $p$-Laplacian equations,, J. Math. Anal. Appl., 316 (2006), 229.  doi: doi:10.1016/j.jmaa.2005.04.034.  Google Scholar

[28]

J. Liu and S. Liu, The existence of multiple solutions to quasilinear elliptic equations,, Bull. London Math. Soc., 37 (2005), 592.  doi: doi:10.1112/S0024609304004023.  Google Scholar

[29]

M. Montenegro, Strong maximum principles for supersolutions of quasilinear elliptic equations,, Nonlinear Anal., 37 (1991), 431.  doi: doi:10.1016/S0362-546X(98)00057-1.  Google Scholar

[30]

D. Motreanu and N. S. Papageorgiou, Existence and multiplicity of solutions for Neumann problems,, J. Differential Eqns., 232 (2007), 1.  doi: doi:10.1016/j.jde.2006.09.008.  Google Scholar

[31]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Nonlinear Neumann problems near resonance,, Indiana Univ. Math. J., 58 (2009), 1257.  doi: doi:10.1512/iumj.2009.58.3565.  Google Scholar

[32]

N. S. Papageorgiou and S. Th. Kyritsi, "Handbook of Applied Analysis,", Springer, (2009).   Google Scholar

[33]

E. Papageorgiou and N. S. Papageorgiou, A multiplicity theorem for problems with the $p$-Laplacian,, J. Funct. Anal., 244 (2007), 63.  doi: doi:10.1016/j.jfa.2006.11.015.  Google Scholar

[34]

E. Papageorgiou and N. S. Papageorgiou, Multiplicity of solutions for a class of resonant $p$-Laplacian Dirichlet problems,, Pacific J. Math., 241 (2009), 309.  doi: doi:10.2140/pjm.2009.241.309.  Google Scholar

[35]

N. S. Papageorgiou, E. M. Rocha and V. Staicu, A multiplicity theorem for hemivariational inequalities with a $p$-Laplacian-like differential operator,, Nonlin. Anal., 69 (2008), 1150.  doi: doi:10.1016/j.na.2007.06.023.  Google Scholar

[36]

N. S. Trudinger and XuJia Wang, Quasilinear elliptic equations with signed measure,, Discrete Contin. Dynamical Systems, 23 (2009), 477.   Google Scholar

[37]

Z. Q. Wang, On a superlinear elliptic equation,, Ann. Inst. H. Poincare Analyse Non Lineaire, 8 (1991), 43.   Google Scholar

[38]

M. Willem, "Minimax Theorems,", Birkhauser, (1996).   Google Scholar

[39]

Q. Zhang, A strong maximum principle for differential equations with nonstandard $p(x)$-growth condition,, J. Math. Anal. Appl., 312 (2005), 24.  doi: doi:10.1016/j.jmaa.2005.03.013.  Google Scholar

[40]

Z. Zhang, J. Q. Chen and S. Li, Construction of pseudo-gradient vector field and sign-changing multiple solutions involving $p$-Laplacian,, J. Differential Eqns., 201 (2004), 287.  doi: doi:10.1016/j.jde.2004.03.019.  Google Scholar

[1]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[2]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[3]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[4]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[5]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[6]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[7]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[8]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[9]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[10]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[11]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[12]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[13]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[14]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[15]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[16]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[17]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[18]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[19]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[20]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]