July  2011, 10(4): 1111-1119. doi: 10.3934/cpaa.2011.10.1111

Regularity of solutions to an integral equation associated with Bessel potential

1. 

Department of Mathematics, Wayne State University, Detroit, MI 48202, United States

Received  July 2010 Revised  December 2010 Published  April 2011

In this paper, we study the regularity of the positive solutions to an integral equation associated with the Bessel potential. The kernel estimates for the Bessel potential plays an essential role in deriving such regularity results. First, we apply the regularity lifting by contracting operators to get the $L^\infty$ estimate. Then, we use the regularity lifting by combinations of contracting and shrinking operators, which was recently developed in [4] and [5], to prove the Lipschitz continuity estimate. Our regularity results here have been recently extended to positive solutions to an integral system associated with Bessel potential [9].
Citation: Xiaolong Han, Guozhen Lu. Regularity of solutions to an integral equation associated with Bessel potential. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1111-1119. doi: 10.3934/cpaa.2011.10.1111
References:
[1]

W. Chen, C. Jin, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations,, Discrete Contin. Dyn. Syst., (2005), 164.   Google Scholar

[2]

W. Chen and C. Li, Regularity of solutions for a system of integral equations,, Commun. Pure Appl. Anal., 4 (2005), 1.  doi: 10.3934/cpaa.2005.4.1.  Google Scholar

[3]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Discrete Contin. Dyn. Syst., 24 (2009), 1167.  doi: 10.3934/dcds.2009.24.1167.  Google Scholar

[4]

W. Chen and C. Li, "Methods on Nonliear Elliptic Equations,'', AIMS Series on Differential Equations and Dynamical Systems, (2010).   Google Scholar

[5]

W. Chen, C. Li and C. Ma, Regularity of solutions for an integral system of Wolff type,, preprint., ().   Google Scholar

[6]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, Discrete Contin. Dyn. Syst., 12 (2005), 347.  doi: 0.3934/dcds.2005.12.347.  Google Scholar

[7]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Commun. Pure Appl. Math, 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[8]

L. Grafakos, "Classical and Modern Fourier Analysis,'', Pearson Education, (2004).   Google Scholar

[9]

X. Han and G. Lu, Regularity of solutions to an integral system of Bessel potential,, preprint., ().   Google Scholar

[10]

Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc. (JEMS), 6 (2004), 153.  doi: 10.4171/JEMS/6.  Google Scholar

[11]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Commun. Pure Appl. Anal., 6 (2007), 453.  doi: 10.3934/cpaa.2007.6.453.  Google Scholar

[12]

M. Li and D. Chen, A Liouville type theorem for an integral system,, Commun. Pure Appl. Anal., 5 (2006), 855.  doi: 10.3934/cpaa.2006.5.855.  Google Scholar

[13]

M. Li and D. Chen, Radial symmetry and monotonicity for an integral equation,, J. Math. Anal. Appl., 342 (2008), 943.  doi: 10.1016/j.jmaa.2007.12.064.  Google Scholar

[14]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,'', Princeton Mathematical Series, (1970).   Google Scholar

show all references

References:
[1]

W. Chen, C. Jin, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations,, Discrete Contin. Dyn. Syst., (2005), 164.   Google Scholar

[2]

W. Chen and C. Li, Regularity of solutions for a system of integral equations,, Commun. Pure Appl. Anal., 4 (2005), 1.  doi: 10.3934/cpaa.2005.4.1.  Google Scholar

[3]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Discrete Contin. Dyn. Syst., 24 (2009), 1167.  doi: 10.3934/dcds.2009.24.1167.  Google Scholar

[4]

W. Chen and C. Li, "Methods on Nonliear Elliptic Equations,'', AIMS Series on Differential Equations and Dynamical Systems, (2010).   Google Scholar

[5]

W. Chen, C. Li and C. Ma, Regularity of solutions for an integral system of Wolff type,, preprint., ().   Google Scholar

[6]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, Discrete Contin. Dyn. Syst., 12 (2005), 347.  doi: 0.3934/dcds.2005.12.347.  Google Scholar

[7]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Commun. Pure Appl. Math, 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[8]

L. Grafakos, "Classical and Modern Fourier Analysis,'', Pearson Education, (2004).   Google Scholar

[9]

X. Han and G. Lu, Regularity of solutions to an integral system of Bessel potential,, preprint., ().   Google Scholar

[10]

Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc. (JEMS), 6 (2004), 153.  doi: 10.4171/JEMS/6.  Google Scholar

[11]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Commun. Pure Appl. Anal., 6 (2007), 453.  doi: 10.3934/cpaa.2007.6.453.  Google Scholar

[12]

M. Li and D. Chen, A Liouville type theorem for an integral system,, Commun. Pure Appl. Anal., 5 (2006), 855.  doi: 10.3934/cpaa.2006.5.855.  Google Scholar

[13]

M. Li and D. Chen, Radial symmetry and monotonicity for an integral equation,, J. Math. Anal. Appl., 342 (2008), 943.  doi: 10.1016/j.jmaa.2007.12.064.  Google Scholar

[14]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,'', Princeton Mathematical Series, (1970).   Google Scholar

[1]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[2]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[3]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[4]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[5]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[6]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[7]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[8]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[9]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[10]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[11]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[12]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[15]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[16]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[17]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[18]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[19]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[20]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]