July  2011, 10(4): 1129-1147. doi: 10.3934/cpaa.2011.10.1129

A continuum of extinction rates for the fast diffusion equation

1. 

Department of Applied Mathematics and Statistics, Comenius University, 842 48 Bratislava

2. 

Departamento de Matemáticas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid

3. 

Fakultät für Mathematik, Universität Duisburg-Essen, 45117 Essen, Germany

Received  September 2010 Revised  November 2011 Published  April 2011

We find a continuum of extinction rates for solutions $u(y,\tau)\ge 0$ of the fast diffusion equation $u_\tau=\Delta u^m$ in a subrange of exponents $m\in (0,1)$. The equation is posed in $R^n$ for times up to the extinction time $T>0$. The rates take the form $\|u(\cdot,\tau)\|_\infty$ ~ $(T-\tau)^\theta$ for a whole interval of $\theta>0$. These extinction rates depend explicitly on the spatial decay rates of initial data.
Citation: Marek Fila, Juan-Luis Vázquez, Michael Winkler. A continuum of extinction rates for the fast diffusion equation. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1129-1147. doi: 10.3934/cpaa.2011.10.1129
References:
[1]

J. G. Berryman and C. J. Holland, Stability of the separable solution for fast diffusion, Arch. Rat. Mech. Anal., 74 (1980), 379-388. doi: 10.1007/BF00249681.

[2]

A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Asymptotics of the fast diffusion equation via entropy estimates, Arch. Rat. Mech. Anal., 191 (2009), 347-385. doi: 10.1007/s00205-008-0155-z.

[3]

M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities, Proc. Nat. Acad. Sciences, 107 (2010), 16459-16464. doi: 10.1073/pnas.1003972107.

[4]

M. Bonforte, G. Grillo and J. L. Vázquez, Special fast diffusion with slow asymptotics. Entropy method and flow on a Riemannian manifold, Arch. Rat. Mech. Anal., 196 (2010), 631-680. doi: 10.1007/s00205-009-0252-7.

[5]

J. Denzler and R. J. McCann, Fast diffusion to self-Similarity: Complete spectrum, long-time asymptotics, and numerology, Arch. Rat. Mech. Anal., 175 (2005), 301-342. doi: 10.1007/s00205-004-0336-3.

[6]

M. Fila, J. King, M. Winkler and E. Yanagida, Optimal lower bound of the grow-up rate for a supercritical parabolic equation, J. Diff. Equations, 228 (2006), 339-356. doi: 10.1016/j.jde.2006.01.019.

[7]

M. Fila and M. Winkler, Rate of convergence to a singular steady state of a supercritical parabolic equation, J. Evol. Equations, 8 (2008), 673-692. doi: 10.1007/s00028-008-0400-9.

[8]

M. Fila, M. Winkler and E. Yanagida, Grow-up rate of solutions for a supercritical semilinear diffusion equation, J. Diff. Equations, 205 (2004), 365-389. doi: 10.1016/j.jde.2004.03.009.

[9]

J. L. Vázquez, "Smoothing and Decay Estimates for Nonlinear Diffusion Equations,'' Oxford Lecture Notes in Maths. and its Applications, vol. 33, Oxford University Press, Oxford, 2006.

[10]

J. L. Vázquez, "The Porous Medium Equation. Mathematical Theory,'' Oxford Mathematical Monographs, Oxford University Press, Oxford, 2007.

show all references

References:
[1]

J. G. Berryman and C. J. Holland, Stability of the separable solution for fast diffusion, Arch. Rat. Mech. Anal., 74 (1980), 379-388. doi: 10.1007/BF00249681.

[2]

A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Asymptotics of the fast diffusion equation via entropy estimates, Arch. Rat. Mech. Anal., 191 (2009), 347-385. doi: 10.1007/s00205-008-0155-z.

[3]

M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities, Proc. Nat. Acad. Sciences, 107 (2010), 16459-16464. doi: 10.1073/pnas.1003972107.

[4]

M. Bonforte, G. Grillo and J. L. Vázquez, Special fast diffusion with slow asymptotics. Entropy method and flow on a Riemannian manifold, Arch. Rat. Mech. Anal., 196 (2010), 631-680. doi: 10.1007/s00205-009-0252-7.

[5]

J. Denzler and R. J. McCann, Fast diffusion to self-Similarity: Complete spectrum, long-time asymptotics, and numerology, Arch. Rat. Mech. Anal., 175 (2005), 301-342. doi: 10.1007/s00205-004-0336-3.

[6]

M. Fila, J. King, M. Winkler and E. Yanagida, Optimal lower bound of the grow-up rate for a supercritical parabolic equation, J. Diff. Equations, 228 (2006), 339-356. doi: 10.1016/j.jde.2006.01.019.

[7]

M. Fila and M. Winkler, Rate of convergence to a singular steady state of a supercritical parabolic equation, J. Evol. Equations, 8 (2008), 673-692. doi: 10.1007/s00028-008-0400-9.

[8]

M. Fila, M. Winkler and E. Yanagida, Grow-up rate of solutions for a supercritical semilinear diffusion equation, J. Diff. Equations, 205 (2004), 365-389. doi: 10.1016/j.jde.2004.03.009.

[9]

J. L. Vázquez, "Smoothing and Decay Estimates for Nonlinear Diffusion Equations,'' Oxford Lecture Notes in Maths. and its Applications, vol. 33, Oxford University Press, Oxford, 2006.

[10]

J. L. Vázquez, "The Porous Medium Equation. Mathematical Theory,'' Oxford Mathematical Monographs, Oxford University Press, Oxford, 2007.

[1]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[2]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic and Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[3]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic and Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[4]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[5]

Patrick Cattiaux, Elissar Nasreddine, Marjolaine Puel. Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: The critical case. Kinetic and Related Models, 2019, 12 (4) : 727-748. doi: 10.3934/krm.2019028

[6]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics and Games, 2021, 8 (4) : 381-402. doi: 10.3934/jdg.2021013

[7]

Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure and Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845

[8]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic and Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[9]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[10]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks and Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[11]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[12]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[13]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

[14]

Martin Burger, Ina Humpert, Jan-Frederik Pietschmann. On Fokker-Planck equations with In- and Outflow of Mass. Kinetic and Related Models, 2020, 13 (2) : 249-277. doi: 10.3934/krm.2020009

[15]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic and Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[16]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[17]

Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079

[18]

Simon Plazotta. A BDF2-approach for the non-linear Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2893-2913. doi: 10.3934/dcds.2019120

[19]

Anton Arnold, Beatrice Signorello. Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022009

[20]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic and Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]