July  2011, 10(4): 1129-1147. doi: 10.3934/cpaa.2011.10.1129

A continuum of extinction rates for the fast diffusion equation

1. 

Department of Applied Mathematics and Statistics, Comenius University, 842 48 Bratislava

2. 

Departamento de Matemáticas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid

3. 

Fakultät für Mathematik, Universität Duisburg-Essen, 45117 Essen, Germany

Received  September 2010 Revised  November 2011 Published  April 2011

We find a continuum of extinction rates for solutions $u(y,\tau)\ge 0$ of the fast diffusion equation $u_\tau=\Delta u^m$ in a subrange of exponents $m\in (0,1)$. The equation is posed in $R^n$ for times up to the extinction time $T>0$. The rates take the form $\|u(\cdot,\tau)\|_\infty$ ~ $(T-\tau)^\theta$ for a whole interval of $\theta>0$. These extinction rates depend explicitly on the spatial decay rates of initial data.
Citation: Marek Fila, Juan-Luis Vázquez, Michael Winkler. A continuum of extinction rates for the fast diffusion equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1129-1147. doi: 10.3934/cpaa.2011.10.1129
References:
[1]

J. G. Berryman and C. J. Holland, Stability of the separable solution for fast diffusion,, Arch. Rat. Mech. Anal., 74 (1980), 379.  doi: 10.1007/BF00249681.  Google Scholar

[2]

A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Asymptotics of the fast diffusion equation via entropy estimates,, Arch. Rat. Mech. Anal., 191 (2009), 347.  doi: 10.1007/s00205-008-0155-z.  Google Scholar

[3]

M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities,, Proc. Nat. Acad. Sciences, 107 (2010), 16459.  doi: 10.1073/pnas.1003972107.  Google Scholar

[4]

M. Bonforte, G. Grillo and J. L. Vázquez, Special fast diffusion with slow asymptotics. Entropy method and flow on a Riemannian manifold,, Arch. Rat. Mech. Anal., 196 (2010), 631.  doi: 10.1007/s00205-009-0252-7.  Google Scholar

[5]

J. Denzler and R. J. McCann, Fast diffusion to self-Similarity: Complete spectrum, long-time asymptotics, and numerology,, Arch. Rat. Mech. Anal., 175 (2005), 301.  doi: 10.1007/s00205-004-0336-3.  Google Scholar

[6]

M. Fila, J. King, M. Winkler and E. Yanagida, Optimal lower bound of the grow-up rate for a supercritical parabolic equation,, J. Diff. Equations, 228 (2006), 339.  doi: 10.1016/j.jde.2006.01.019.  Google Scholar

[7]

M. Fila and M. Winkler, Rate of convergence to a singular steady state of a supercritical parabolic equation,, J. Evol. Equations, 8 (2008), 673.  doi: 10.1007/s00028-008-0400-9.  Google Scholar

[8]

M. Fila, M. Winkler and E. Yanagida, Grow-up rate of solutions for a supercritical semilinear diffusion equation,, J. Diff. Equations, 205 (2004), 365.  doi: 10.1016/j.jde.2004.03.009.  Google Scholar

[9]

J. L. Vázquez, "Smoothing and Decay Estimates for Nonlinear Diffusion Equations,'', Oxford Lecture Notes in Maths. and its Applications, (2006).   Google Scholar

[10]

J. L. Vázquez, "The Porous Medium Equation. Mathematical Theory,'', Oxford Mathematical Monographs, (2007).   Google Scholar

show all references

References:
[1]

J. G. Berryman and C. J. Holland, Stability of the separable solution for fast diffusion,, Arch. Rat. Mech. Anal., 74 (1980), 379.  doi: 10.1007/BF00249681.  Google Scholar

[2]

A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Asymptotics of the fast diffusion equation via entropy estimates,, Arch. Rat. Mech. Anal., 191 (2009), 347.  doi: 10.1007/s00205-008-0155-z.  Google Scholar

[3]

M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities,, Proc. Nat. Acad. Sciences, 107 (2010), 16459.  doi: 10.1073/pnas.1003972107.  Google Scholar

[4]

M. Bonforte, G. Grillo and J. L. Vázquez, Special fast diffusion with slow asymptotics. Entropy method and flow on a Riemannian manifold,, Arch. Rat. Mech. Anal., 196 (2010), 631.  doi: 10.1007/s00205-009-0252-7.  Google Scholar

[5]

J. Denzler and R. J. McCann, Fast diffusion to self-Similarity: Complete spectrum, long-time asymptotics, and numerology,, Arch. Rat. Mech. Anal., 175 (2005), 301.  doi: 10.1007/s00205-004-0336-3.  Google Scholar

[6]

M. Fila, J. King, M. Winkler and E. Yanagida, Optimal lower bound of the grow-up rate for a supercritical parabolic equation,, J. Diff. Equations, 228 (2006), 339.  doi: 10.1016/j.jde.2006.01.019.  Google Scholar

[7]

M. Fila and M. Winkler, Rate of convergence to a singular steady state of a supercritical parabolic equation,, J. Evol. Equations, 8 (2008), 673.  doi: 10.1007/s00028-008-0400-9.  Google Scholar

[8]

M. Fila, M. Winkler and E. Yanagida, Grow-up rate of solutions for a supercritical semilinear diffusion equation,, J. Diff. Equations, 205 (2004), 365.  doi: 10.1016/j.jde.2004.03.009.  Google Scholar

[9]

J. L. Vázquez, "Smoothing and Decay Estimates for Nonlinear Diffusion Equations,'', Oxford Lecture Notes in Maths. and its Applications, (2006).   Google Scholar

[10]

J. L. Vázquez, "The Porous Medium Equation. Mathematical Theory,'', Oxford Mathematical Monographs, (2007).   Google Scholar

[1]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[2]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[3]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[4]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[5]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[6]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[7]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[8]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[9]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[10]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[11]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[12]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[13]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[14]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[15]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[16]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[17]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[18]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[19]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[20]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]