\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A note on a superlinear and periodic elliptic system in the whole space

Abstract / Introduction Related Papers Cited by
  • This paper is concerned with the following periodic Hamiltonian elliptic system

    $ -\Delta u+V(x)u=g(x,v)$ in $R^N,$

    $ -\Delta v+V(x)v=f(x,u)$ in $R^N,$

    $ u(x)\to 0$ and $v(x)\to 0$ as $|x|\to\infty,$

    where the potential $V$ is periodic and has a positive bound from below, $f(x,t)$ and $g(x,t)$ are periodic in $x$ and superlinear but subcritical in $t$ at infinity. By using generalized Nehari manifold method, existence of a positive ground state solution as well as multiple solutions for odd $f$ and $g$ are obtained.

    Mathematics Subject Classification: Primary: 35J50; Secondary: 35J55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. O. Alves, P. C. Carrião and O. H. Miyagaki, On the existence of positive solutions of a perturbed Hamiltonian system in $\mathbbR^N$, J. Math. Anal. Appl., 276 (2002), 673-690.doi: 10.1016/S0022-247X(02)00413-4.

    [2]

    A. I. Ávila and J. Yang, Multiple solutions of nonlinear elliptic systems, Nonlinear Diff. Eqns. Appl., 12 (2005), 459-479.doi: 10.1007/s00030-005-0022-7.

    [3]

    A. I. Ávila and J. Yang, On the existence and shape of least energy solutions for some elliptic systems, J. Diff. Eqns., 191 (2003), 348-376.doi: 10.1016/S0022-0396(03)00017-2.

    [4]

    T. Bartsch and D. G. De Figueiredo, Infinitely many solutions of nonlinear elliptic systems, Progress in Nonlinear Differential Equations and Their Applications, Vol. 35, Birkhäuser, Basel/Switzerland, 1999, 51-67.

    [5]

    T. Bartsch and Y. Ding, Deformation theorems on non-metrizable vector spaces and applications to critical point theory, Math. Nach., 279 (2006), 1-22.doi: 10.1002/mana.200410420.

    [6]

    V. Benci and P. H. Rabinowitz, Critical point theorems for indefinite functionals, Inven. Math., 52 (1979), 241-273.doi: 10.1007/BF01389883.

    [7]

    V. Coti-Zelati and P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $\mathbbR^N$, Comm. Pure Appl. Math., 45 (1992), 1217-1269.doi: 10.1002/cpa.3160451002.

    [8]

    D. G. De Figueiredo and Y. Ding, Strongly indefinite functionals and multiple solutions of elliptic systems, Tran. Amer. Math. Soc., 355 (2003), 2973-2989.doi: 10.1090/S0002-9947-03-03257-4.

    [9]

    D. G. De Figueiredo and P. L. Felmer, On superquadratic elliptic systems, Tran. Amer. Math. Soc., 343 (1994), 97-116.doi: 10.1090/S0002-9947-1994-1214781-2.

    [10]

    D. G. De Figueiredo, J. M. DO Ó and B. Ruf, An Orlicz-space approach to superlinear elliptic systems, J. Func. Anal., 224 (2005), 471-496.doi: 10.1016/j.jfa.2004.09.008.

    [11]

    D. G. De Figueiredo and J. Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems, Nonlinear Anal., 33 (1998), 211-234.doi: 10.1016/S0362-546X(97)00548-8.

    [12]

    J. Hulshof and R. C. A. M. Van der Vorst, Differential systems with strongly variational structure, J. Func. Anal., 114 (1993), 32-58.doi: 10.1006/jfan.1993.1062.

    [13]

    L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesmann-Lazer type problem set on $\mathbbR^N$, Proc. Roy. Soc Edinburgh, 129A (1999), 787-809.

    [14]

    W. Kryszewski and A. Szulkin, An infinite dimensional Morse theory with applications, Tran. Amer. Math. Soc., 349 (1997), 3181-3234.doi: 10.1090/S0002-9947-97-01963-6.

    [15]

    G. Li and J. Yang, Asymptotically linear elliptic systems, Comm. Partial Diff. Eqns., 29 (2004), 925-954.

    [16]

    Y. Li, Z. Wang and J. Zeng, Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 829-837.doi: 10.1016/j.anihpc.2006.01.003.

    [17]

    J. L. Lions and E. Magenes, "Non-homogeneous Boundary Value Problems and Applications," I, Springer-Berlag, Berlin, 1972.

    [18]

    P. L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case. Part II, Ann. Inst. H. Poincaré, Analyse non linéaire, 1 (1984), 223-283.

    [19]

    A. Pankov, Periodic nonlinear Schröinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259-287.doi: 10.1007/s00032-005-0047-8.

    [20]

    A. Pistoia and M. Ramos, Locating the peaks of the least energy solutions to an elliptic system with Neumann boundary conditions, J. Diff. Eqns., 201 (2004), 160-176.doi: 10.1016/j.jde.2004.02.003.

    [21]

    M. Reed and B. Simon, "Methods of Modern Mathematical Physics, IV Analysis of Operators," Academic Press, New York, 1978.

    [22]

    E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian stysems, Math. Z., 209 (1992), 133-160.doi: 10.1007/BF02570817.

    [23]

    B. Sirakov, On the existence of solutions of Hamiltonian elliptic systems in $R^N$, Adv. Diff. Eqns., 5 (2000), 1445-1464.

    [24]

    A. Szulkin and T. Weth, Ground state solutions for some indefinite problems, J. Funct. Anal., 257 (2009), 3802-3822.doi: 10.1016/j.jfa.2009.09.013.

    [25]

    H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators," North-Holland, Amsterdam, 1978.

    [26]

    J. Yang, Nontrivial solutions of semilinear elliptic systems in $\mathbbR^N$, Electron. J. Diff. Eqns., conf. 06 (2001), 343-357.

    [27]

    F. Zhao, L. Zhao and Y. Ding, Multiple solutions for asymptotically linear elliptic systems, Nonlinear Differ. Equ. Appl., 15 (2008), 673-688.doi: 10.1007/s00030-008-7080-6.

    [28]

    F. Zhao, L. Zhao and Y. Ding, Infinitely many solutions for asymptotically linear periodic Hamiltonian elliptic systems, ESAIM: Control, Optimisation and Calculus of Variations, 16 (2010), 77-91.doi: 10.1051/cocv:2008064.

    [29]

    F. Zhao, L. Zhao and Y. Ding, A note on superlinear Hamiltonian elliptic systems, J. Math. Phy., 50 (2009), 112702.doi: 10.1063/1.3256120.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return