July  2011, 10(4): 1165-1181. doi: 10.3934/cpaa.2011.10.1165

The inverse Fueter mapping theorem

1. 

Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9, 20133 Milano

2. 

Politecnico di Milano, Dipartimento di Matematica, Via Bonardi, 9, 20133 Milano, Italy

3. 

Clifford Research Group, Faculty of Sciences, Ghent University, Galglaan 2, 9000 Gent, Belgium

Received  January 2010 Revised  November 2010 Published  April 2011

In a recent paper the authors have shown how to give an integral representation of the Fueter mapping theorem using the Cauchy formula for slice monogenic functions. Specifically, given a slice monogenic function $f$ of the form $f=\alpha+\underline{\omega}\beta$ (where $\alpha$, $\beta$ satisfy the Cauchy-Riemann equations) we represent in integral form the axially monogenic function $\bar{f}=A+\underline{\omega}B$ (where $A,B$ satisfy the Vekua's system) given by $\bar{f}(x)=\Delta^{\frac{n-1}{2}}f(x)$ where $\Delta$ is the Laplace operator in dimension $n+1$. In this paper we solve the inverse problem: given an axially monogenic function $\bar{f}$ determine a slice monogenic function $f$ (called Fueter's primitive of $\bar{f}$ such that $\bar{f}=\Delta^{\frac{n-1}{2}}f(x)$. We prove an integral representation theorem for $f$ in terms of $\bar{f}$ which we call the inverse Fueter mapping theorem (in integral form). Such a result is obtained also for regular functions of a quaternionic variable of axial type. The solution $f$ of the equation $\Delta^{\frac{n-1}{2}}f(x)=\bar{f} (x)$ in the Clifford analysis setting, i.e. the inversion of the classical Fueter mapping theorem, is new in the literature and has some consequences that are now under investigation.
Citation: Fabrizio Colombo, Irene Sabadini, Frank Sommen. The inverse Fueter mapping theorem. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1165-1181. doi: 10.3934/cpaa.2011.10.1165
References:
[1]

F. Brackx, R. Delanghe and F. Sommen, "Clifford Analysis,", Pitman Res. Notes in Math., (1982).   Google Scholar

[2]

F. Brackx, H. De Schepper and F. Sommen, A theoretical framework for wavelet analysis in a Hermitean Clifford setting,, Commun. Pure Appl. Anal., 6 (2007), 549.  doi: 10.3934/cpaa.2007.6.549.  Google Scholar

[3]

P. Cerejeiras, M. Ferreira, U. Kahler and F. Sommen, Continuous wavelet transform and wavelet frames on the sphere using Clifford analysis,, Commun. Pure Appl. Anal., 6 (2007), 619.  doi: 10.3934/cpaa.2007.6.619.  Google Scholar

[4]

F. Colombo, G. Gentili, I. Sabadini and D. C. Struppa, Extension results for slice regular functions of a quaternionic variable,, Adv. Math., 222 (2009), 1793.  doi: 10.1016/j.aim.2009.06.015.  Google Scholar

[5]

F. Colombo and I. Sabadini, A structure formula for slice monogenic functions and some of its consequences,, in, (2009), 101.   Google Scholar

[6]

F. Colombo and I. Sabadini, On some properties of the quaternionic functional calculus,, J. Geom. Anal., 19 (2009), 601.  doi: 10.1007/s12220-009-9075-x.  Google Scholar

[7]

F. Colombo and I. Sabadini, The Cauchy formula with $s$-monogenic kernel and a functional calculus for noncommuting operators,, J. Math. Anal. Appl., 373 (2011), 655.  doi: 10.1016/j.jmaa.2010.08.016.  Google Scholar

[8]

F. Colombo, I. Sabadini and F. Sommen, The Fueter mapping theorem in integral form and the $\mathcalF$-functional calculus,, Math. Methods Appl. Sci., 33 (2010), 2050.  doi: 10.1002/mma.1315.  Google Scholar

[9]

F. Colombo, I. Sabadini, F. Sommen and D. C. Struppa, "Analysis of Dirac Systems and Computational Algebra,", Progress in Mathematical Physics, (2004).   Google Scholar

[10]

F. Colombo, I. Sabadini and D. C. Struppa, A new functional calculus for noncommuting operators,, J. Funct. Anal., 254 (2008), 2255.  doi: 10.1016/j.jfa.2007.12.008.  Google Scholar

[11]

F. Colombo, I. Sabadini and D. C. Struppa, Slice monogenic functions,, Israel J. Math., 171 (2009), 385.  doi: 10.1007/s11856-009-0055-4.  Google Scholar

[12]

F. Colombo, I. Sabadini and D. C. Struppa, An extension theorem for slice monogenic functions and some of its consequences,, Israel J. Math., 177 (2010), 369.  doi: 10.1007/s11856-010-0051-8.  Google Scholar

[13]

F. Colombo, I. Sabadini and D. C. Struppa, Duality theorems for slice hyperholomorphic functions,, J. Reine Angew. Math., 645 (2010), 85.  doi: 10.1515/CRELLE.2010.060.  Google Scholar

[14]

F. Colombo, I. Sabadini and D. C. Struppa, "Noncommutative Functional Calculus, Theory and Applications of Slice Hyperholomorphic Functions,", Progress in Mathematics Vol. 289, (2011).   Google Scholar

[15]

A. K. Common and F. Sommen, Axial monogenic functions from holomorphic functions,, J. Math. Anal. Appl., 179 (1993), 610.  doi: 10.1006/jmaa.1993.1372.  Google Scholar

[16]

C. G. Cullen, An integral theorem for analytic intrinsic functions on quaternions,, Duke Math. J., 32 (1965), 139.  doi: 10.1215/S0012-7094-65-03212-6.  Google Scholar

[17]

R. Delanghe, F. Sommen and V. Souček, "Clifford Algebra and Spinor-valued Functions,", Mathematics and Its Applications 53, (1992).   Google Scholar

[18]

G. Gentili and D. C. Struppa, A new theory of regular functions of a quaternionic variable,, Adv. Math., 216 (2007), 279.   Google Scholar

[19]

R. Ghiloni and A. Perotti, Slice regular functions on real alternative algebras,, Adv. Math., 226 (2011), 1662.   Google Scholar

[20]

J. E. Gilbert and M. A. M. Murray, "Clifford Algebras and Dirac Operators in Harmonic Analysis,", Cambridge studies in advanced mathematics n. 26, (1991).   Google Scholar

[21]

I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series, and Products,", Accademic Press LTD, (2000).   Google Scholar

[22]

K. Gürlebeck, K. Habetha and W. Sprößig, "Holomorphic Functions in the Plane and $n$-dimensional Space,", Birkh\, (2008).   Google Scholar

[23]

H. Hochstadt, "The Functions of Mathematical Physics,", Pure Appl. Math., (1971).   Google Scholar

[24]

K. I. Kou, T. Qian and F. Sommen, Generalizations of Fueter's theorem,, Meth. Appl. Anal., 9 (2002), 273.   Google Scholar

[25]

D. Peña-Peña, "Cauchy-Kowalevski Extensions, Fueter Theorems and Boundary Values of Special Systems in Clifford Analysis,", PhD Dissertation, (2008).   Google Scholar

[26]

D. Peña-Peña, T. Qian and F. Sommen, An alternative proof of Fueter's theorem,, Complex Var. Elliptic Equ., 51 (2006), 913.  doi: 10.1080/17476930600667650.  Google Scholar

[27]

T. Qian, Generalization of Fueter's result to $R^{n+1}$,, Rend. Mat. Acc. Lincei, 8 (1997), 111.   Google Scholar

[28]

T. Qian, Fourier analysis on a starlike Lipschitz aurfaces,, J. Funct. Anal., 183 (2001), 370.  doi: 10.1006/jfan.2001.3750.  Google Scholar

[29]

M. Sce, Osservazioni sulle serie di potenze nei moduli quadratici,, Atti Acc. Lincei Rend. Fisica, 23 (1957), 220.   Google Scholar

[30]

F. Sommen, On a generalization of Fueter's theorem,, Zeit. Anal. Anwen., 19 (2000), 899.   Google Scholar

show all references

References:
[1]

F. Brackx, R. Delanghe and F. Sommen, "Clifford Analysis,", Pitman Res. Notes in Math., (1982).   Google Scholar

[2]

F. Brackx, H. De Schepper and F. Sommen, A theoretical framework for wavelet analysis in a Hermitean Clifford setting,, Commun. Pure Appl. Anal., 6 (2007), 549.  doi: 10.3934/cpaa.2007.6.549.  Google Scholar

[3]

P. Cerejeiras, M. Ferreira, U. Kahler and F. Sommen, Continuous wavelet transform and wavelet frames on the sphere using Clifford analysis,, Commun. Pure Appl. Anal., 6 (2007), 619.  doi: 10.3934/cpaa.2007.6.619.  Google Scholar

[4]

F. Colombo, G. Gentili, I. Sabadini and D. C. Struppa, Extension results for slice regular functions of a quaternionic variable,, Adv. Math., 222 (2009), 1793.  doi: 10.1016/j.aim.2009.06.015.  Google Scholar

[5]

F. Colombo and I. Sabadini, A structure formula for slice monogenic functions and some of its consequences,, in, (2009), 101.   Google Scholar

[6]

F. Colombo and I. Sabadini, On some properties of the quaternionic functional calculus,, J. Geom. Anal., 19 (2009), 601.  doi: 10.1007/s12220-009-9075-x.  Google Scholar

[7]

F. Colombo and I. Sabadini, The Cauchy formula with $s$-monogenic kernel and a functional calculus for noncommuting operators,, J. Math. Anal. Appl., 373 (2011), 655.  doi: 10.1016/j.jmaa.2010.08.016.  Google Scholar

[8]

F. Colombo, I. Sabadini and F. Sommen, The Fueter mapping theorem in integral form and the $\mathcalF$-functional calculus,, Math. Methods Appl. Sci., 33 (2010), 2050.  doi: 10.1002/mma.1315.  Google Scholar

[9]

F. Colombo, I. Sabadini, F. Sommen and D. C. Struppa, "Analysis of Dirac Systems and Computational Algebra,", Progress in Mathematical Physics, (2004).   Google Scholar

[10]

F. Colombo, I. Sabadini and D. C. Struppa, A new functional calculus for noncommuting operators,, J. Funct. Anal., 254 (2008), 2255.  doi: 10.1016/j.jfa.2007.12.008.  Google Scholar

[11]

F. Colombo, I. Sabadini and D. C. Struppa, Slice monogenic functions,, Israel J. Math., 171 (2009), 385.  doi: 10.1007/s11856-009-0055-4.  Google Scholar

[12]

F. Colombo, I. Sabadini and D. C. Struppa, An extension theorem for slice monogenic functions and some of its consequences,, Israel J. Math., 177 (2010), 369.  doi: 10.1007/s11856-010-0051-8.  Google Scholar

[13]

F. Colombo, I. Sabadini and D. C. Struppa, Duality theorems for slice hyperholomorphic functions,, J. Reine Angew. Math., 645 (2010), 85.  doi: 10.1515/CRELLE.2010.060.  Google Scholar

[14]

F. Colombo, I. Sabadini and D. C. Struppa, "Noncommutative Functional Calculus, Theory and Applications of Slice Hyperholomorphic Functions,", Progress in Mathematics Vol. 289, (2011).   Google Scholar

[15]

A. K. Common and F. Sommen, Axial monogenic functions from holomorphic functions,, J. Math. Anal. Appl., 179 (1993), 610.  doi: 10.1006/jmaa.1993.1372.  Google Scholar

[16]

C. G. Cullen, An integral theorem for analytic intrinsic functions on quaternions,, Duke Math. J., 32 (1965), 139.  doi: 10.1215/S0012-7094-65-03212-6.  Google Scholar

[17]

R. Delanghe, F. Sommen and V. Souček, "Clifford Algebra and Spinor-valued Functions,", Mathematics and Its Applications 53, (1992).   Google Scholar

[18]

G. Gentili and D. C. Struppa, A new theory of regular functions of a quaternionic variable,, Adv. Math., 216 (2007), 279.   Google Scholar

[19]

R. Ghiloni and A. Perotti, Slice regular functions on real alternative algebras,, Adv. Math., 226 (2011), 1662.   Google Scholar

[20]

J. E. Gilbert and M. A. M. Murray, "Clifford Algebras and Dirac Operators in Harmonic Analysis,", Cambridge studies in advanced mathematics n. 26, (1991).   Google Scholar

[21]

I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series, and Products,", Accademic Press LTD, (2000).   Google Scholar

[22]

K. Gürlebeck, K. Habetha and W. Sprößig, "Holomorphic Functions in the Plane and $n$-dimensional Space,", Birkh\, (2008).   Google Scholar

[23]

H. Hochstadt, "The Functions of Mathematical Physics,", Pure Appl. Math., (1971).   Google Scholar

[24]

K. I. Kou, T. Qian and F. Sommen, Generalizations of Fueter's theorem,, Meth. Appl. Anal., 9 (2002), 273.   Google Scholar

[25]

D. Peña-Peña, "Cauchy-Kowalevski Extensions, Fueter Theorems and Boundary Values of Special Systems in Clifford Analysis,", PhD Dissertation, (2008).   Google Scholar

[26]

D. Peña-Peña, T. Qian and F. Sommen, An alternative proof of Fueter's theorem,, Complex Var. Elliptic Equ., 51 (2006), 913.  doi: 10.1080/17476930600667650.  Google Scholar

[27]

T. Qian, Generalization of Fueter's result to $R^{n+1}$,, Rend. Mat. Acc. Lincei, 8 (1997), 111.   Google Scholar

[28]

T. Qian, Fourier analysis on a starlike Lipschitz aurfaces,, J. Funct. Anal., 183 (2001), 370.  doi: 10.1006/jfan.2001.3750.  Google Scholar

[29]

M. Sce, Osservazioni sulle serie di potenze nei moduli quadratici,, Atti Acc. Lincei Rend. Fisica, 23 (1957), 220.   Google Scholar

[30]

F. Sommen, On a generalization of Fueter's theorem,, Zeit. Anal. Anwen., 19 (2000), 899.   Google Scholar

[1]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[2]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[3]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[4]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[7]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[8]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[9]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[10]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[11]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[12]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[13]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[14]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[15]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[16]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[17]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[18]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[19]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[20]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (76)
  • HTML views (0)
  • Cited by (22)

Other articles
by authors

[Back to Top]