-
Previous Article
The bifurcation of interfacial capillary-gravity waves under O(2) symmetry
- CPAA Home
- This Issue
-
Next Article
A note on a superlinear and periodic elliptic system in the whole space
The inverse Fueter mapping theorem
1. | Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9, 20133 Milano |
2. | Politecnico di Milano, Dipartimento di Matematica, Via Bonardi, 9, 20133 Milano, Italy |
3. | Clifford Research Group, Faculty of Sciences, Ghent University, Galglaan 2, 9000 Gent, Belgium |
References:
[1] |
F. Brackx, R. Delanghe and F. Sommen, "Clifford Analysis,", Pitman Res. Notes in Math., (1982).
|
[2] |
F. Brackx, H. De Schepper and F. Sommen, A theoretical framework for wavelet analysis in a Hermitean Clifford setting,, Commun. Pure Appl. Anal., 6 (2007), 549.
doi: 10.3934/cpaa.2007.6.549. |
[3] |
P. Cerejeiras, M. Ferreira, U. Kahler and F. Sommen, Continuous wavelet transform and wavelet frames on the sphere using Clifford analysis,, Commun. Pure Appl. Anal., 6 (2007), 619.
doi: 10.3934/cpaa.2007.6.619. |
[4] |
F. Colombo, G. Gentili, I. Sabadini and D. C. Struppa, Extension results for slice regular functions of a quaternionic variable,, Adv. Math., 222 (2009), 1793.
doi: 10.1016/j.aim.2009.06.015. |
[5] |
F. Colombo and I. Sabadini, A structure formula for slice monogenic functions and some of its consequences,, in, (2009), 101. Google Scholar |
[6] |
F. Colombo and I. Sabadini, On some properties of the quaternionic functional calculus,, J. Geom. Anal., 19 (2009), 601.
doi: 10.1007/s12220-009-9075-x. |
[7] |
F. Colombo and I. Sabadini, The Cauchy formula with $s$-monogenic kernel and a functional calculus for noncommuting operators,, J. Math. Anal. Appl., 373 (2011), 655.
doi: 10.1016/j.jmaa.2010.08.016. |
[8] |
F. Colombo, I. Sabadini and F. Sommen, The Fueter mapping theorem in integral form and the $\mathcalF$-functional calculus,, Math. Methods Appl. Sci., 33 (2010), 2050.
doi: 10.1002/mma.1315. |
[9] |
F. Colombo, I. Sabadini, F. Sommen and D. C. Struppa, "Analysis of Dirac Systems and Computational Algebra,", Progress in Mathematical Physics, (2004).
|
[10] |
F. Colombo, I. Sabadini and D. C. Struppa, A new functional calculus for noncommuting operators,, J. Funct. Anal., 254 (2008), 2255.
doi: 10.1016/j.jfa.2007.12.008. |
[11] |
F. Colombo, I. Sabadini and D. C. Struppa, Slice monogenic functions,, Israel J. Math., 171 (2009), 385.
doi: 10.1007/s11856-009-0055-4. |
[12] |
F. Colombo, I. Sabadini and D. C. Struppa, An extension theorem for slice monogenic functions and some of its consequences,, Israel J. Math., 177 (2010), 369.
doi: 10.1007/s11856-010-0051-8. |
[13] |
F. Colombo, I. Sabadini and D. C. Struppa, Duality theorems for slice hyperholomorphic functions,, J. Reine Angew. Math., 645 (2010), 85.
doi: 10.1515/CRELLE.2010.060. |
[14] |
F. Colombo, I. Sabadini and D. C. Struppa, "Noncommutative Functional Calculus, Theory and Applications of Slice Hyperholomorphic Functions,", Progress in Mathematics Vol. 289, (2011). Google Scholar |
[15] |
A. K. Common and F. Sommen, Axial monogenic functions from holomorphic functions,, J. Math. Anal. Appl., 179 (1993), 610.
doi: 10.1006/jmaa.1993.1372. |
[16] |
C. G. Cullen, An integral theorem for analytic intrinsic functions on quaternions,, Duke Math. J., 32 (1965), 139.
doi: 10.1215/S0012-7094-65-03212-6. |
[17] |
R. Delanghe, F. Sommen and V. Souček, "Clifford Algebra and Spinor-valued Functions,", Mathematics and Its Applications 53, (1992).
|
[18] |
G. Gentili and D. C. Struppa, A new theory of regular functions of a quaternionic variable,, Adv. Math., 216 (2007), 279.
|
[19] |
R. Ghiloni and A. Perotti, Slice regular functions on real alternative algebras,, Adv. Math., 226 (2011), 1662.
|
[20] |
J. E. Gilbert and M. A. M. Murray, "Clifford Algebras and Dirac Operators in Harmonic Analysis,", Cambridge studies in advanced mathematics n. 26, (1991). Google Scholar |
[21] |
I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series, and Products,", Accademic Press LTD, (2000). Google Scholar |
[22] |
K. Gürlebeck, K. Habetha and W. Sprößig, "Holomorphic Functions in the Plane and $n$-dimensional Space,", Birkh\, (2008). Google Scholar |
[23] |
H. Hochstadt, "The Functions of Mathematical Physics,", Pure Appl. Math., (1971). Google Scholar |
[24] |
K. I. Kou, T. Qian and F. Sommen, Generalizations of Fueter's theorem,, Meth. Appl. Anal., 9 (2002), 273.
|
[25] |
D. Peña-Peña, "Cauchy-Kowalevski Extensions, Fueter Theorems and Boundary Values of Special Systems in Clifford Analysis,", PhD Dissertation, (2008). Google Scholar |
[26] |
D. Peña-Peña, T. Qian and F. Sommen, An alternative proof of Fueter's theorem,, Complex Var. Elliptic Equ., 51 (2006), 913.
doi: 10.1080/17476930600667650. |
[27] |
T. Qian, Generalization of Fueter's result to $R^{n+1}$,, Rend. Mat. Acc. Lincei, 8 (1997), 111.
|
[28] |
T. Qian, Fourier analysis on a starlike Lipschitz aurfaces,, J. Funct. Anal., 183 (2001), 370.
doi: 10.1006/jfan.2001.3750. |
[29] |
M. Sce, Osservazioni sulle serie di potenze nei moduli quadratici,, Atti Acc. Lincei Rend. Fisica, 23 (1957), 220. Google Scholar |
[30] |
F. Sommen, On a generalization of Fueter's theorem,, Zeit. Anal. Anwen., 19 (2000), 899.
|
show all references
References:
[1] |
F. Brackx, R. Delanghe and F. Sommen, "Clifford Analysis,", Pitman Res. Notes in Math., (1982).
|
[2] |
F. Brackx, H. De Schepper and F. Sommen, A theoretical framework for wavelet analysis in a Hermitean Clifford setting,, Commun. Pure Appl. Anal., 6 (2007), 549.
doi: 10.3934/cpaa.2007.6.549. |
[3] |
P. Cerejeiras, M. Ferreira, U. Kahler and F. Sommen, Continuous wavelet transform and wavelet frames on the sphere using Clifford analysis,, Commun. Pure Appl. Anal., 6 (2007), 619.
doi: 10.3934/cpaa.2007.6.619. |
[4] |
F. Colombo, G. Gentili, I. Sabadini and D. C. Struppa, Extension results for slice regular functions of a quaternionic variable,, Adv. Math., 222 (2009), 1793.
doi: 10.1016/j.aim.2009.06.015. |
[5] |
F. Colombo and I. Sabadini, A structure formula for slice monogenic functions and some of its consequences,, in, (2009), 101. Google Scholar |
[6] |
F. Colombo and I. Sabadini, On some properties of the quaternionic functional calculus,, J. Geom. Anal., 19 (2009), 601.
doi: 10.1007/s12220-009-9075-x. |
[7] |
F. Colombo and I. Sabadini, The Cauchy formula with $s$-monogenic kernel and a functional calculus for noncommuting operators,, J. Math. Anal. Appl., 373 (2011), 655.
doi: 10.1016/j.jmaa.2010.08.016. |
[8] |
F. Colombo, I. Sabadini and F. Sommen, The Fueter mapping theorem in integral form and the $\mathcalF$-functional calculus,, Math. Methods Appl. Sci., 33 (2010), 2050.
doi: 10.1002/mma.1315. |
[9] |
F. Colombo, I. Sabadini, F. Sommen and D. C. Struppa, "Analysis of Dirac Systems and Computational Algebra,", Progress in Mathematical Physics, (2004).
|
[10] |
F. Colombo, I. Sabadini and D. C. Struppa, A new functional calculus for noncommuting operators,, J. Funct. Anal., 254 (2008), 2255.
doi: 10.1016/j.jfa.2007.12.008. |
[11] |
F. Colombo, I. Sabadini and D. C. Struppa, Slice monogenic functions,, Israel J. Math., 171 (2009), 385.
doi: 10.1007/s11856-009-0055-4. |
[12] |
F. Colombo, I. Sabadini and D. C. Struppa, An extension theorem for slice monogenic functions and some of its consequences,, Israel J. Math., 177 (2010), 369.
doi: 10.1007/s11856-010-0051-8. |
[13] |
F. Colombo, I. Sabadini and D. C. Struppa, Duality theorems for slice hyperholomorphic functions,, J. Reine Angew. Math., 645 (2010), 85.
doi: 10.1515/CRELLE.2010.060. |
[14] |
F. Colombo, I. Sabadini and D. C. Struppa, "Noncommutative Functional Calculus, Theory and Applications of Slice Hyperholomorphic Functions,", Progress in Mathematics Vol. 289, (2011). Google Scholar |
[15] |
A. K. Common and F. Sommen, Axial monogenic functions from holomorphic functions,, J. Math. Anal. Appl., 179 (1993), 610.
doi: 10.1006/jmaa.1993.1372. |
[16] |
C. G. Cullen, An integral theorem for analytic intrinsic functions on quaternions,, Duke Math. J., 32 (1965), 139.
doi: 10.1215/S0012-7094-65-03212-6. |
[17] |
R. Delanghe, F. Sommen and V. Souček, "Clifford Algebra and Spinor-valued Functions,", Mathematics and Its Applications 53, (1992).
|
[18] |
G. Gentili and D. C. Struppa, A new theory of regular functions of a quaternionic variable,, Adv. Math., 216 (2007), 279.
|
[19] |
R. Ghiloni and A. Perotti, Slice regular functions on real alternative algebras,, Adv. Math., 226 (2011), 1662.
|
[20] |
J. E. Gilbert and M. A. M. Murray, "Clifford Algebras and Dirac Operators in Harmonic Analysis,", Cambridge studies in advanced mathematics n. 26, (1991). Google Scholar |
[21] |
I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series, and Products,", Accademic Press LTD, (2000). Google Scholar |
[22] |
K. Gürlebeck, K. Habetha and W. Sprößig, "Holomorphic Functions in the Plane and $n$-dimensional Space,", Birkh\, (2008). Google Scholar |
[23] |
H. Hochstadt, "The Functions of Mathematical Physics,", Pure Appl. Math., (1971). Google Scholar |
[24] |
K. I. Kou, T. Qian and F. Sommen, Generalizations of Fueter's theorem,, Meth. Appl. Anal., 9 (2002), 273.
|
[25] |
D. Peña-Peña, "Cauchy-Kowalevski Extensions, Fueter Theorems and Boundary Values of Special Systems in Clifford Analysis,", PhD Dissertation, (2008). Google Scholar |
[26] |
D. Peña-Peña, T. Qian and F. Sommen, An alternative proof of Fueter's theorem,, Complex Var. Elliptic Equ., 51 (2006), 913.
doi: 10.1080/17476930600667650. |
[27] |
T. Qian, Generalization of Fueter's result to $R^{n+1}$,, Rend. Mat. Acc. Lincei, 8 (1997), 111.
|
[28] |
T. Qian, Fourier analysis on a starlike Lipschitz aurfaces,, J. Funct. Anal., 183 (2001), 370.
doi: 10.1006/jfan.2001.3750. |
[29] |
M. Sce, Osservazioni sulle serie di potenze nei moduli quadratici,, Atti Acc. Lincei Rend. Fisica, 23 (1957), 220. Google Scholar |
[30] |
F. Sommen, On a generalization of Fueter's theorem,, Zeit. Anal. Anwen., 19 (2000), 899.
|
[1] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[2] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[3] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[4] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[5] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[6] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[7] |
Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067 |
[8] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[9] |
Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021015 |
[10] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[11] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[12] |
Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021004 |
[13] |
Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021070 |
[14] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[15] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[16] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[17] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[18] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[19] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[20] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]