July  2011, 10(4): 1165-1181. doi: 10.3934/cpaa.2011.10.1165

The inverse Fueter mapping theorem

1. 

Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9, 20133 Milano

2. 

Politecnico di Milano, Dipartimento di Matematica, Via Bonardi, 9, 20133 Milano, Italy

3. 

Clifford Research Group, Faculty of Sciences, Ghent University, Galglaan 2, 9000 Gent, Belgium

Received  January 2010 Revised  November 2010 Published  April 2011

In a recent paper the authors have shown how to give an integral representation of the Fueter mapping theorem using the Cauchy formula for slice monogenic functions. Specifically, given a slice monogenic function $f$ of the form $f=\alpha+\underline{\omega}\beta$ (where $\alpha$, $\beta$ satisfy the Cauchy-Riemann equations) we represent in integral form the axially monogenic function $\bar{f}=A+\underline{\omega}B$ (where $A,B$ satisfy the Vekua's system) given by $\bar{f}(x)=\Delta^{\frac{n-1}{2}}f(x)$ where $\Delta$ is the Laplace operator in dimension $n+1$. In this paper we solve the inverse problem: given an axially monogenic function $\bar{f}$ determine a slice monogenic function $f$ (called Fueter's primitive of $\bar{f}$ such that $\bar{f}=\Delta^{\frac{n-1}{2}}f(x)$. We prove an integral representation theorem for $f$ in terms of $\bar{f}$ which we call the inverse Fueter mapping theorem (in integral form). Such a result is obtained also for regular functions of a quaternionic variable of axial type. The solution $f$ of the equation $\Delta^{\frac{n-1}{2}}f(x)=\bar{f} (x)$ in the Clifford analysis setting, i.e. the inversion of the classical Fueter mapping theorem, is new in the literature and has some consequences that are now under investigation.
Citation: Fabrizio Colombo, Irene Sabadini, Frank Sommen. The inverse Fueter mapping theorem. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1165-1181. doi: 10.3934/cpaa.2011.10.1165
References:
[1]

F. Brackx, R. Delanghe and F. Sommen, "Clifford Analysis,", Pitman Res. Notes in Math., (1982).   Google Scholar

[2]

F. Brackx, H. De Schepper and F. Sommen, A theoretical framework for wavelet analysis in a Hermitean Clifford setting,, Commun. Pure Appl. Anal., 6 (2007), 549.  doi: 10.3934/cpaa.2007.6.549.  Google Scholar

[3]

P. Cerejeiras, M. Ferreira, U. Kahler and F. Sommen, Continuous wavelet transform and wavelet frames on the sphere using Clifford analysis,, Commun. Pure Appl. Anal., 6 (2007), 619.  doi: 10.3934/cpaa.2007.6.619.  Google Scholar

[4]

F. Colombo, G. Gentili, I. Sabadini and D. C. Struppa, Extension results for slice regular functions of a quaternionic variable,, Adv. Math., 222 (2009), 1793.  doi: 10.1016/j.aim.2009.06.015.  Google Scholar

[5]

F. Colombo and I. Sabadini, A structure formula for slice monogenic functions and some of its consequences,, in, (2009), 101.   Google Scholar

[6]

F. Colombo and I. Sabadini, On some properties of the quaternionic functional calculus,, J. Geom. Anal., 19 (2009), 601.  doi: 10.1007/s12220-009-9075-x.  Google Scholar

[7]

F. Colombo and I. Sabadini, The Cauchy formula with $s$-monogenic kernel and a functional calculus for noncommuting operators,, J. Math. Anal. Appl., 373 (2011), 655.  doi: 10.1016/j.jmaa.2010.08.016.  Google Scholar

[8]

F. Colombo, I. Sabadini and F. Sommen, The Fueter mapping theorem in integral form and the $\mathcalF$-functional calculus,, Math. Methods Appl. Sci., 33 (2010), 2050.  doi: 10.1002/mma.1315.  Google Scholar

[9]

F. Colombo, I. Sabadini, F. Sommen and D. C. Struppa, "Analysis of Dirac Systems and Computational Algebra,", Progress in Mathematical Physics, (2004).   Google Scholar

[10]

F. Colombo, I. Sabadini and D. C. Struppa, A new functional calculus for noncommuting operators,, J. Funct. Anal., 254 (2008), 2255.  doi: 10.1016/j.jfa.2007.12.008.  Google Scholar

[11]

F. Colombo, I. Sabadini and D. C. Struppa, Slice monogenic functions,, Israel J. Math., 171 (2009), 385.  doi: 10.1007/s11856-009-0055-4.  Google Scholar

[12]

F. Colombo, I. Sabadini and D. C. Struppa, An extension theorem for slice monogenic functions and some of its consequences,, Israel J. Math., 177 (2010), 369.  doi: 10.1007/s11856-010-0051-8.  Google Scholar

[13]

F. Colombo, I. Sabadini and D. C. Struppa, Duality theorems for slice hyperholomorphic functions,, J. Reine Angew. Math., 645 (2010), 85.  doi: 10.1515/CRELLE.2010.060.  Google Scholar

[14]

F. Colombo, I. Sabadini and D. C. Struppa, "Noncommutative Functional Calculus, Theory and Applications of Slice Hyperholomorphic Functions,", Progress in Mathematics Vol. 289, (2011).   Google Scholar

[15]

A. K. Common and F. Sommen, Axial monogenic functions from holomorphic functions,, J. Math. Anal. Appl., 179 (1993), 610.  doi: 10.1006/jmaa.1993.1372.  Google Scholar

[16]

C. G. Cullen, An integral theorem for analytic intrinsic functions on quaternions,, Duke Math. J., 32 (1965), 139.  doi: 10.1215/S0012-7094-65-03212-6.  Google Scholar

[17]

R. Delanghe, F. Sommen and V. Souček, "Clifford Algebra and Spinor-valued Functions,", Mathematics and Its Applications 53, (1992).   Google Scholar

[18]

G. Gentili and D. C. Struppa, A new theory of regular functions of a quaternionic variable,, Adv. Math., 216 (2007), 279.   Google Scholar

[19]

R. Ghiloni and A. Perotti, Slice regular functions on real alternative algebras,, Adv. Math., 226 (2011), 1662.   Google Scholar

[20]

J. E. Gilbert and M. A. M. Murray, "Clifford Algebras and Dirac Operators in Harmonic Analysis,", Cambridge studies in advanced mathematics n. 26, (1991).   Google Scholar

[21]

I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series, and Products,", Accademic Press LTD, (2000).   Google Scholar

[22]

K. Gürlebeck, K. Habetha and W. Sprößig, "Holomorphic Functions in the Plane and $n$-dimensional Space,", Birkh\, (2008).   Google Scholar

[23]

H. Hochstadt, "The Functions of Mathematical Physics,", Pure Appl. Math., (1971).   Google Scholar

[24]

K. I. Kou, T. Qian and F. Sommen, Generalizations of Fueter's theorem,, Meth. Appl. Anal., 9 (2002), 273.   Google Scholar

[25]

D. Peña-Peña, "Cauchy-Kowalevski Extensions, Fueter Theorems and Boundary Values of Special Systems in Clifford Analysis,", PhD Dissertation, (2008).   Google Scholar

[26]

D. Peña-Peña, T. Qian and F. Sommen, An alternative proof of Fueter's theorem,, Complex Var. Elliptic Equ., 51 (2006), 913.  doi: 10.1080/17476930600667650.  Google Scholar

[27]

T. Qian, Generalization of Fueter's result to $R^{n+1}$,, Rend. Mat. Acc. Lincei, 8 (1997), 111.   Google Scholar

[28]

T. Qian, Fourier analysis on a starlike Lipschitz aurfaces,, J. Funct. Anal., 183 (2001), 370.  doi: 10.1006/jfan.2001.3750.  Google Scholar

[29]

M. Sce, Osservazioni sulle serie di potenze nei moduli quadratici,, Atti Acc. Lincei Rend. Fisica, 23 (1957), 220.   Google Scholar

[30]

F. Sommen, On a generalization of Fueter's theorem,, Zeit. Anal. Anwen., 19 (2000), 899.   Google Scholar

show all references

References:
[1]

F. Brackx, R. Delanghe and F. Sommen, "Clifford Analysis,", Pitman Res. Notes in Math., (1982).   Google Scholar

[2]

F. Brackx, H. De Schepper and F. Sommen, A theoretical framework for wavelet analysis in a Hermitean Clifford setting,, Commun. Pure Appl. Anal., 6 (2007), 549.  doi: 10.3934/cpaa.2007.6.549.  Google Scholar

[3]

P. Cerejeiras, M. Ferreira, U. Kahler and F. Sommen, Continuous wavelet transform and wavelet frames on the sphere using Clifford analysis,, Commun. Pure Appl. Anal., 6 (2007), 619.  doi: 10.3934/cpaa.2007.6.619.  Google Scholar

[4]

F. Colombo, G. Gentili, I. Sabadini and D. C. Struppa, Extension results for slice regular functions of a quaternionic variable,, Adv. Math., 222 (2009), 1793.  doi: 10.1016/j.aim.2009.06.015.  Google Scholar

[5]

F. Colombo and I. Sabadini, A structure formula for slice monogenic functions and some of its consequences,, in, (2009), 101.   Google Scholar

[6]

F. Colombo and I. Sabadini, On some properties of the quaternionic functional calculus,, J. Geom. Anal., 19 (2009), 601.  doi: 10.1007/s12220-009-9075-x.  Google Scholar

[7]

F. Colombo and I. Sabadini, The Cauchy formula with $s$-monogenic kernel and a functional calculus for noncommuting operators,, J. Math. Anal. Appl., 373 (2011), 655.  doi: 10.1016/j.jmaa.2010.08.016.  Google Scholar

[8]

F. Colombo, I. Sabadini and F. Sommen, The Fueter mapping theorem in integral form and the $\mathcalF$-functional calculus,, Math. Methods Appl. Sci., 33 (2010), 2050.  doi: 10.1002/mma.1315.  Google Scholar

[9]

F. Colombo, I. Sabadini, F. Sommen and D. C. Struppa, "Analysis of Dirac Systems and Computational Algebra,", Progress in Mathematical Physics, (2004).   Google Scholar

[10]

F. Colombo, I. Sabadini and D. C. Struppa, A new functional calculus for noncommuting operators,, J. Funct. Anal., 254 (2008), 2255.  doi: 10.1016/j.jfa.2007.12.008.  Google Scholar

[11]

F. Colombo, I. Sabadini and D. C. Struppa, Slice monogenic functions,, Israel J. Math., 171 (2009), 385.  doi: 10.1007/s11856-009-0055-4.  Google Scholar

[12]

F. Colombo, I. Sabadini and D. C. Struppa, An extension theorem for slice monogenic functions and some of its consequences,, Israel J. Math., 177 (2010), 369.  doi: 10.1007/s11856-010-0051-8.  Google Scholar

[13]

F. Colombo, I. Sabadini and D. C. Struppa, Duality theorems for slice hyperholomorphic functions,, J. Reine Angew. Math., 645 (2010), 85.  doi: 10.1515/CRELLE.2010.060.  Google Scholar

[14]

F. Colombo, I. Sabadini and D. C. Struppa, "Noncommutative Functional Calculus, Theory and Applications of Slice Hyperholomorphic Functions,", Progress in Mathematics Vol. 289, (2011).   Google Scholar

[15]

A. K. Common and F. Sommen, Axial monogenic functions from holomorphic functions,, J. Math. Anal. Appl., 179 (1993), 610.  doi: 10.1006/jmaa.1993.1372.  Google Scholar

[16]

C. G. Cullen, An integral theorem for analytic intrinsic functions on quaternions,, Duke Math. J., 32 (1965), 139.  doi: 10.1215/S0012-7094-65-03212-6.  Google Scholar

[17]

R. Delanghe, F. Sommen and V. Souček, "Clifford Algebra and Spinor-valued Functions,", Mathematics and Its Applications 53, (1992).   Google Scholar

[18]

G. Gentili and D. C. Struppa, A new theory of regular functions of a quaternionic variable,, Adv. Math., 216 (2007), 279.   Google Scholar

[19]

R. Ghiloni and A. Perotti, Slice regular functions on real alternative algebras,, Adv. Math., 226 (2011), 1662.   Google Scholar

[20]

J. E. Gilbert and M. A. M. Murray, "Clifford Algebras and Dirac Operators in Harmonic Analysis,", Cambridge studies in advanced mathematics n. 26, (1991).   Google Scholar

[21]

I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series, and Products,", Accademic Press LTD, (2000).   Google Scholar

[22]

K. Gürlebeck, K. Habetha and W. Sprößig, "Holomorphic Functions in the Plane and $n$-dimensional Space,", Birkh\, (2008).   Google Scholar

[23]

H. Hochstadt, "The Functions of Mathematical Physics,", Pure Appl. Math., (1971).   Google Scholar

[24]

K. I. Kou, T. Qian and F. Sommen, Generalizations of Fueter's theorem,, Meth. Appl. Anal., 9 (2002), 273.   Google Scholar

[25]

D. Peña-Peña, "Cauchy-Kowalevski Extensions, Fueter Theorems and Boundary Values of Special Systems in Clifford Analysis,", PhD Dissertation, (2008).   Google Scholar

[26]

D. Peña-Peña, T. Qian and F. Sommen, An alternative proof of Fueter's theorem,, Complex Var. Elliptic Equ., 51 (2006), 913.  doi: 10.1080/17476930600667650.  Google Scholar

[27]

T. Qian, Generalization of Fueter's result to $R^{n+1}$,, Rend. Mat. Acc. Lincei, 8 (1997), 111.   Google Scholar

[28]

T. Qian, Fourier analysis on a starlike Lipschitz aurfaces,, J. Funct. Anal., 183 (2001), 370.  doi: 10.1006/jfan.2001.3750.  Google Scholar

[29]

M. Sce, Osservazioni sulle serie di potenze nei moduli quadratici,, Atti Acc. Lincei Rend. Fisica, 23 (1957), 220.   Google Scholar

[30]

F. Sommen, On a generalization of Fueter's theorem,, Zeit. Anal. Anwen., 19 (2000), 899.   Google Scholar

[1]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[2]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[3]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[4]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[5]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[6]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[7]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[8]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[9]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[10]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[11]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[12]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[13]

Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021070

[14]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[15]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[16]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[17]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[18]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[19]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[20]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (103)
  • HTML views (0)
  • Cited by (22)

Other articles
by authors

[Back to Top]