July  2011, 10(4): 1165-1181. doi: 10.3934/cpaa.2011.10.1165

The inverse Fueter mapping theorem

1. 

Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9, 20133 Milano

2. 

Politecnico di Milano, Dipartimento di Matematica, Via Bonardi, 9, 20133 Milano, Italy

3. 

Clifford Research Group, Faculty of Sciences, Ghent University, Galglaan 2, 9000 Gent, Belgium

Received  January 2010 Revised  November 2010 Published  April 2011

In a recent paper the authors have shown how to give an integral representation of the Fueter mapping theorem using the Cauchy formula for slice monogenic functions. Specifically, given a slice monogenic function $f$ of the form $f=\alpha+\underline{\omega}\beta$ (where $\alpha$, $\beta$ satisfy the Cauchy-Riemann equations) we represent in integral form the axially monogenic function $\bar{f}=A+\underline{\omega}B$ (where $A,B$ satisfy the Vekua's system) given by $\bar{f}(x)=\Delta^{\frac{n-1}{2}}f(x)$ where $\Delta$ is the Laplace operator in dimension $n+1$. In this paper we solve the inverse problem: given an axially monogenic function $\bar{f}$ determine a slice monogenic function $f$ (called Fueter's primitive of $\bar{f}$ such that $\bar{f}=\Delta^{\frac{n-1}{2}}f(x)$. We prove an integral representation theorem for $f$ in terms of $\bar{f}$ which we call the inverse Fueter mapping theorem (in integral form). Such a result is obtained also for regular functions of a quaternionic variable of axial type. The solution $f$ of the equation $\Delta^{\frac{n-1}{2}}f(x)=\bar{f} (x)$ in the Clifford analysis setting, i.e. the inversion of the classical Fueter mapping theorem, is new in the literature and has some consequences that are now under investigation.
Citation: Fabrizio Colombo, Irene Sabadini, Frank Sommen. The inverse Fueter mapping theorem. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1165-1181. doi: 10.3934/cpaa.2011.10.1165
References:
[1]

F. Brackx, R. Delanghe and F. Sommen, "Clifford Analysis,", Pitman Res. Notes in Math., (1982).   Google Scholar

[2]

F. Brackx, H. De Schepper and F. Sommen, A theoretical framework for wavelet analysis in a Hermitean Clifford setting,, Commun. Pure Appl. Anal., 6 (2007), 549.  doi: 10.3934/cpaa.2007.6.549.  Google Scholar

[3]

P. Cerejeiras, M. Ferreira, U. Kahler and F. Sommen, Continuous wavelet transform and wavelet frames on the sphere using Clifford analysis,, Commun. Pure Appl. Anal., 6 (2007), 619.  doi: 10.3934/cpaa.2007.6.619.  Google Scholar

[4]

F. Colombo, G. Gentili, I. Sabadini and D. C. Struppa, Extension results for slice regular functions of a quaternionic variable,, Adv. Math., 222 (2009), 1793.  doi: 10.1016/j.aim.2009.06.015.  Google Scholar

[5]

F. Colombo and I. Sabadini, A structure formula for slice monogenic functions and some of its consequences,, in, (2009), 101.   Google Scholar

[6]

F. Colombo and I. Sabadini, On some properties of the quaternionic functional calculus,, J. Geom. Anal., 19 (2009), 601.  doi: 10.1007/s12220-009-9075-x.  Google Scholar

[7]

F. Colombo and I. Sabadini, The Cauchy formula with $s$-monogenic kernel and a functional calculus for noncommuting operators,, J. Math. Anal. Appl., 373 (2011), 655.  doi: 10.1016/j.jmaa.2010.08.016.  Google Scholar

[8]

F. Colombo, I. Sabadini and F. Sommen, The Fueter mapping theorem in integral form and the $\mathcalF$-functional calculus,, Math. Methods Appl. Sci., 33 (2010), 2050.  doi: 10.1002/mma.1315.  Google Scholar

[9]

F. Colombo, I. Sabadini, F. Sommen and D. C. Struppa, "Analysis of Dirac Systems and Computational Algebra,", Progress in Mathematical Physics, (2004).   Google Scholar

[10]

F. Colombo, I. Sabadini and D. C. Struppa, A new functional calculus for noncommuting operators,, J. Funct. Anal., 254 (2008), 2255.  doi: 10.1016/j.jfa.2007.12.008.  Google Scholar

[11]

F. Colombo, I. Sabadini and D. C. Struppa, Slice monogenic functions,, Israel J. Math., 171 (2009), 385.  doi: 10.1007/s11856-009-0055-4.  Google Scholar

[12]

F. Colombo, I. Sabadini and D. C. Struppa, An extension theorem for slice monogenic functions and some of its consequences,, Israel J. Math., 177 (2010), 369.  doi: 10.1007/s11856-010-0051-8.  Google Scholar

[13]

F. Colombo, I. Sabadini and D. C. Struppa, Duality theorems for slice hyperholomorphic functions,, J. Reine Angew. Math., 645 (2010), 85.  doi: 10.1515/CRELLE.2010.060.  Google Scholar

[14]

F. Colombo, I. Sabadini and D. C. Struppa, "Noncommutative Functional Calculus, Theory and Applications of Slice Hyperholomorphic Functions,", Progress in Mathematics Vol. 289, (2011).   Google Scholar

[15]

A. K. Common and F. Sommen, Axial monogenic functions from holomorphic functions,, J. Math. Anal. Appl., 179 (1993), 610.  doi: 10.1006/jmaa.1993.1372.  Google Scholar

[16]

C. G. Cullen, An integral theorem for analytic intrinsic functions on quaternions,, Duke Math. J., 32 (1965), 139.  doi: 10.1215/S0012-7094-65-03212-6.  Google Scholar

[17]

R. Delanghe, F. Sommen and V. Souček, "Clifford Algebra and Spinor-valued Functions,", Mathematics and Its Applications 53, (1992).   Google Scholar

[18]

G. Gentili and D. C. Struppa, A new theory of regular functions of a quaternionic variable,, Adv. Math., 216 (2007), 279.   Google Scholar

[19]

R. Ghiloni and A. Perotti, Slice regular functions on real alternative algebras,, Adv. Math., 226 (2011), 1662.   Google Scholar

[20]

J. E. Gilbert and M. A. M. Murray, "Clifford Algebras and Dirac Operators in Harmonic Analysis,", Cambridge studies in advanced mathematics n. 26, (1991).   Google Scholar

[21]

I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series, and Products,", Accademic Press LTD, (2000).   Google Scholar

[22]

K. Gürlebeck, K. Habetha and W. Sprößig, "Holomorphic Functions in the Plane and $n$-dimensional Space,", Birkh\, (2008).   Google Scholar

[23]

H. Hochstadt, "The Functions of Mathematical Physics,", Pure Appl. Math., (1971).   Google Scholar

[24]

K. I. Kou, T. Qian and F. Sommen, Generalizations of Fueter's theorem,, Meth. Appl. Anal., 9 (2002), 273.   Google Scholar

[25]

D. Peña-Peña, "Cauchy-Kowalevski Extensions, Fueter Theorems and Boundary Values of Special Systems in Clifford Analysis,", PhD Dissertation, (2008).   Google Scholar

[26]

D. Peña-Peña, T. Qian and F. Sommen, An alternative proof of Fueter's theorem,, Complex Var. Elliptic Equ., 51 (2006), 913.  doi: 10.1080/17476930600667650.  Google Scholar

[27]

T. Qian, Generalization of Fueter's result to $R^{n+1}$,, Rend. Mat. Acc. Lincei, 8 (1997), 111.   Google Scholar

[28]

T. Qian, Fourier analysis on a starlike Lipschitz aurfaces,, J. Funct. Anal., 183 (2001), 370.  doi: 10.1006/jfan.2001.3750.  Google Scholar

[29]

M. Sce, Osservazioni sulle serie di potenze nei moduli quadratici,, Atti Acc. Lincei Rend. Fisica, 23 (1957), 220.   Google Scholar

[30]

F. Sommen, On a generalization of Fueter's theorem,, Zeit. Anal. Anwen., 19 (2000), 899.   Google Scholar

show all references

References:
[1]

F. Brackx, R. Delanghe and F. Sommen, "Clifford Analysis,", Pitman Res. Notes in Math., (1982).   Google Scholar

[2]

F. Brackx, H. De Schepper and F. Sommen, A theoretical framework for wavelet analysis in a Hermitean Clifford setting,, Commun. Pure Appl. Anal., 6 (2007), 549.  doi: 10.3934/cpaa.2007.6.549.  Google Scholar

[3]

P. Cerejeiras, M. Ferreira, U. Kahler and F. Sommen, Continuous wavelet transform and wavelet frames on the sphere using Clifford analysis,, Commun. Pure Appl. Anal., 6 (2007), 619.  doi: 10.3934/cpaa.2007.6.619.  Google Scholar

[4]

F. Colombo, G. Gentili, I. Sabadini and D. C. Struppa, Extension results for slice regular functions of a quaternionic variable,, Adv. Math., 222 (2009), 1793.  doi: 10.1016/j.aim.2009.06.015.  Google Scholar

[5]

F. Colombo and I. Sabadini, A structure formula for slice monogenic functions and some of its consequences,, in, (2009), 101.   Google Scholar

[6]

F. Colombo and I. Sabadini, On some properties of the quaternionic functional calculus,, J. Geom. Anal., 19 (2009), 601.  doi: 10.1007/s12220-009-9075-x.  Google Scholar

[7]

F. Colombo and I. Sabadini, The Cauchy formula with $s$-monogenic kernel and a functional calculus for noncommuting operators,, J. Math. Anal. Appl., 373 (2011), 655.  doi: 10.1016/j.jmaa.2010.08.016.  Google Scholar

[8]

F. Colombo, I. Sabadini and F. Sommen, The Fueter mapping theorem in integral form and the $\mathcalF$-functional calculus,, Math. Methods Appl. Sci., 33 (2010), 2050.  doi: 10.1002/mma.1315.  Google Scholar

[9]

F. Colombo, I. Sabadini, F. Sommen and D. C. Struppa, "Analysis of Dirac Systems and Computational Algebra,", Progress in Mathematical Physics, (2004).   Google Scholar

[10]

F. Colombo, I. Sabadini and D. C. Struppa, A new functional calculus for noncommuting operators,, J. Funct. Anal., 254 (2008), 2255.  doi: 10.1016/j.jfa.2007.12.008.  Google Scholar

[11]

F. Colombo, I. Sabadini and D. C. Struppa, Slice monogenic functions,, Israel J. Math., 171 (2009), 385.  doi: 10.1007/s11856-009-0055-4.  Google Scholar

[12]

F. Colombo, I. Sabadini and D. C. Struppa, An extension theorem for slice monogenic functions and some of its consequences,, Israel J. Math., 177 (2010), 369.  doi: 10.1007/s11856-010-0051-8.  Google Scholar

[13]

F. Colombo, I. Sabadini and D. C. Struppa, Duality theorems for slice hyperholomorphic functions,, J. Reine Angew. Math., 645 (2010), 85.  doi: 10.1515/CRELLE.2010.060.  Google Scholar

[14]

F. Colombo, I. Sabadini and D. C. Struppa, "Noncommutative Functional Calculus, Theory and Applications of Slice Hyperholomorphic Functions,", Progress in Mathematics Vol. 289, (2011).   Google Scholar

[15]

A. K. Common and F. Sommen, Axial monogenic functions from holomorphic functions,, J. Math. Anal. Appl., 179 (1993), 610.  doi: 10.1006/jmaa.1993.1372.  Google Scholar

[16]

C. G. Cullen, An integral theorem for analytic intrinsic functions on quaternions,, Duke Math. J., 32 (1965), 139.  doi: 10.1215/S0012-7094-65-03212-6.  Google Scholar

[17]

R. Delanghe, F. Sommen and V. Souček, "Clifford Algebra and Spinor-valued Functions,", Mathematics and Its Applications 53, (1992).   Google Scholar

[18]

G. Gentili and D. C. Struppa, A new theory of regular functions of a quaternionic variable,, Adv. Math., 216 (2007), 279.   Google Scholar

[19]

R. Ghiloni and A. Perotti, Slice regular functions on real alternative algebras,, Adv. Math., 226 (2011), 1662.   Google Scholar

[20]

J. E. Gilbert and M. A. M. Murray, "Clifford Algebras and Dirac Operators in Harmonic Analysis,", Cambridge studies in advanced mathematics n. 26, (1991).   Google Scholar

[21]

I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series, and Products,", Accademic Press LTD, (2000).   Google Scholar

[22]

K. Gürlebeck, K. Habetha and W. Sprößig, "Holomorphic Functions in the Plane and $n$-dimensional Space,", Birkh\, (2008).   Google Scholar

[23]

H. Hochstadt, "The Functions of Mathematical Physics,", Pure Appl. Math., (1971).   Google Scholar

[24]

K. I. Kou, T. Qian and F. Sommen, Generalizations of Fueter's theorem,, Meth. Appl. Anal., 9 (2002), 273.   Google Scholar

[25]

D. Peña-Peña, "Cauchy-Kowalevski Extensions, Fueter Theorems and Boundary Values of Special Systems in Clifford Analysis,", PhD Dissertation, (2008).   Google Scholar

[26]

D. Peña-Peña, T. Qian and F. Sommen, An alternative proof of Fueter's theorem,, Complex Var. Elliptic Equ., 51 (2006), 913.  doi: 10.1080/17476930600667650.  Google Scholar

[27]

T. Qian, Generalization of Fueter's result to $R^{n+1}$,, Rend. Mat. Acc. Lincei, 8 (1997), 111.   Google Scholar

[28]

T. Qian, Fourier analysis on a starlike Lipschitz aurfaces,, J. Funct. Anal., 183 (2001), 370.  doi: 10.1006/jfan.2001.3750.  Google Scholar

[29]

M. Sce, Osservazioni sulle serie di potenze nei moduli quadratici,, Atti Acc. Lincei Rend. Fisica, 23 (1957), 220.   Google Scholar

[30]

F. Sommen, On a generalization of Fueter's theorem,, Zeit. Anal. Anwen., 19 (2000), 899.   Google Scholar

[1]

Fabrizio Colombo, Irene Sabadini, Frank Sommen. The Fueter primitive of biaxially monogenic functions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 657-672. doi: 10.3934/cpaa.2014.13.657

[2]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

[3]

Colin J. Cotter, Michael John Priestley Cullen. Particle relabelling symmetries and Noether's theorem for vertical slice models. Journal of Geometric Mechanics, 2019, 11 (2) : 139-151. doi: 10.3934/jgm.2019007

[4]

Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155

[5]

Matilde Martínez, Shigenori Matsumoto, Alberto Verjovsky. Horocycle flows for laminations by hyperbolic Riemann surfaces and Hedlund's theorem. Journal of Modern Dynamics, 2016, 10: 113-134. doi: 10.3934/jmd.2016.10.113

[6]

Letizia Stefanelli, Ugo Locatelli. Kolmogorov's normal form for equations of motion with dissipative effects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2561-2593. doi: 10.3934/dcdsb.2012.17.2561

[7]

Qiang Li. A kind of generalized transversality theorem for $C^r$ mapping with parameter. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1043-1050. doi: 10.3934/dcdss.2017055

[8]

Vladimir Müller, Aljoša Peperko. Lower spectral radius and spectral mapping theorem for suprema preserving mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4117-4132. doi: 10.3934/dcds.2018179

[9]

Jacques Féjoz. On "Arnold's theorem" on the stability of the solar system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3555-3565. doi: 10.3934/dcds.2013.33.3555

[10]

Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067

[11]

Weiwei Zhao, Jinge Yang, Sining Zheng. Liouville type theorem to an integral system in the half-space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 511-525. doi: 10.3934/cpaa.2014.13.511

[12]

Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems & Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229

[13]

Rabah Amir, Igor V. Evstigneev. On Zermelo's theorem. Journal of Dynamics & Games, 2017, 4 (3) : 191-194. doi: 10.3934/jdg.2017011

[14]

John Hubbard, Yulij Ilyashenko. A proof of Kolmogorov's theorem. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 367-385. doi: 10.3934/dcds.2004.10.367

[15]

Ben Green, Terence Tao, Tamar Ziegler. An inverse theorem for the Gowers $U^{s+1}[N]$-norm. Electronic Research Announcements, 2011, 18: 69-90. doi: 10.3934/era.2011.18.69

[16]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[17]

Hahng-Yun Chu, Se-Hyun Ku, Jong-Suh Park. Conley's theorem for dispersive systems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 313-321. doi: 10.3934/dcdss.2015.8.313

[18]

Sergei Ivanov. On Helly's theorem in geodesic spaces. Electronic Research Announcements, 2014, 21: 109-112. doi: 10.3934/era.2014.21.109

[19]

Yanmin Niu, Xiong Li. An application of Moser's twist theorem to superlinear impulsive differential equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 431-445. doi: 10.3934/dcds.2019017

[20]

V. Niţicâ. Journé's theorem for $C^{n,\omega}$ regularity. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 413-425. doi: 10.3934/dcds.2008.22.413

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]