July  2011, 10(4): 1183-1204. doi: 10.3934/cpaa.2011.10.1183

The bifurcation of interfacial capillary-gravity waves under O(2) symmetry

1. 

School of Mathematics, Kingston University, Kingston-on-Thames, KT1 2EE01103, United Kingdom

Received  March 2010 Revised  November 2010 Published  April 2011

The evolution of an interface between two fluids of different densities is considered. The particular case under examination is when the motion is due to an interaction between the Mth and Nth harmonics of the fundamental mode. By means of a hodograph transformation the problem is cast as an operator equation between two suitable function spaces. Classical techniques are used to reduce the problem to a finite system of algebraic equations. Solutions are found which exhibit a rich variety of behaviour including primary, secondary and multiple bifurcation.
Citation: Mark Jones. The bifurcation of interfacial capillary-gravity waves under O(2) symmetry. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1183-1204. doi: 10.3934/cpaa.2011.10.1183
References:
[1]

D. Armbruster and G. Dangelmayr, Coupled stationary bifurcations in nonflux boundary value problems,, Math. Proc. Camb. Phil. Soc., 101 (1987), 167.  doi: 10.1017/S0305004100066500.  Google Scholar

[2]

N. K. Bari, "A Treatise on Trigonometric Series,", Pergamon Press, (1964).   Google Scholar

[3]

B. Chen and P. G. Saffman, Steady capillary-gravity waves in deep water-1.weakly nonlinear waves,, Stud. App. Math., 60 (1979), 183.   Google Scholar

[4]

P. Christodoulides and F. Dias, Stability of capillary-gravity interfacial waves between two bounded fluids,, Phys. Fluids, 70 (1995), 3013.  doi: 10.1063/1.868678.  Google Scholar

[5]

P. Christodoulides and F. Dias, Resonant capillary-gravity interfacial waves,, J. Fluid Mech., 265 (1994), 303.  doi: 10.1017/S0022112094000856.  Google Scholar

[6]

H. Fujii, M. Mimura and Y. Nishiura, A picture of the global bifurcation diagram in ecological interacting and diffusing systems,, Physica D, 5 (1982), 1.  doi: 10.1016/0167-2789(82)90048-3.  Google Scholar

[7]

M. Golubitsky and D. Schaeffer, "Singularities and Groups in Bifurcation Theory. Vol I,", Springer, (1985).   Google Scholar

[8]

M. Golubitsky, I Stewart and D. Schaeffer, "Singularities and Groups in Bifurcation Theory. Vol II,", Springer, (1988).   Google Scholar

[9]

M. Jones, Small amplitude capillary-gravity waves in a channel of finite depth,, Glasgow Math. J., 31 (1989), 465.   Google Scholar

[10]

M. Jones, Nonlinear ripples of Kelvin-Helmholtz type which arise from an interfacial mode interaction,, J. Fluid Mech., 341 (1997), 295.  doi: 10.1017/S0022112097005624.  Google Scholar

[11]

M. Jones, A system of equations which predicts the nonlinear evolution of a wave packet due to a fluid-fluid interaction under a narrow bandwidth assumption,, Fluid Dyn. Res., 21 (1997), 455.  doi: 10.1016/S0169-5983(97)00024-5.  Google Scholar

[12]

M. Jones, Group invariances, unfoldings and the bifurcation of capillary-gravity waves,, Int. J. Bif. Chaos, 7 (1997), 1243.  doi: 10.1142/S021812749700100X.  Google Scholar

[13]

M. Jones and J. F. Toland, Symmetry and the bifurcation of capillary-gravity waves,, Arch. Rat. Mech. Anal., 96 (1986), 29.  doi: 10.1007/BF00251412.  Google Scholar

[14]

N. Kotchine, Determination rigoureuse des ondes permanentes d'ampleur finie a la surface de seperation deux liquides de profondeur finie,, Math. Ann., 98 (1928), 582.  doi: 10.1007/BF01451610.  Google Scholar

[15]

L. M. Milne-Thomson, "Theretical Hydrodynamics," 4th, edition, (1960).   Google Scholar

[16]

H. Okamoto, On the problem of water-waves of permanent configuration,, Nonlinear Analysis, 14 (1990), 469.  doi: 10.1016/0362-546X(90)90035-F.  Google Scholar

[17]

H. Okamoto, Interfacial progressive water waves- a singularity theoretic view,, Tohoku Math. J., 49 (1997), 33.   Google Scholar

[18]

H. Okamoto and M. Shoji, Remarks on the bifurcation of two dimensional capillary-gravity waves of finite depth,, Publ. Res. Inst. Math. Sci., 30 (1994), 611.  doi: 10.2977/prims/1195165792.  Google Scholar

[19]

J. F. Toland and M. C. W. Jones, The bifurcation and secondary bifurcation of capillary-gravity waves,, Proc. R. Soc. Lond., 399 (1985), 391.  doi: 10.1098/rspa.1985.0063.  Google Scholar

show all references

References:
[1]

D. Armbruster and G. Dangelmayr, Coupled stationary bifurcations in nonflux boundary value problems,, Math. Proc. Camb. Phil. Soc., 101 (1987), 167.  doi: 10.1017/S0305004100066500.  Google Scholar

[2]

N. K. Bari, "A Treatise on Trigonometric Series,", Pergamon Press, (1964).   Google Scholar

[3]

B. Chen and P. G. Saffman, Steady capillary-gravity waves in deep water-1.weakly nonlinear waves,, Stud. App. Math., 60 (1979), 183.   Google Scholar

[4]

P. Christodoulides and F. Dias, Stability of capillary-gravity interfacial waves between two bounded fluids,, Phys. Fluids, 70 (1995), 3013.  doi: 10.1063/1.868678.  Google Scholar

[5]

P. Christodoulides and F. Dias, Resonant capillary-gravity interfacial waves,, J. Fluid Mech., 265 (1994), 303.  doi: 10.1017/S0022112094000856.  Google Scholar

[6]

H. Fujii, M. Mimura and Y. Nishiura, A picture of the global bifurcation diagram in ecological interacting and diffusing systems,, Physica D, 5 (1982), 1.  doi: 10.1016/0167-2789(82)90048-3.  Google Scholar

[7]

M. Golubitsky and D. Schaeffer, "Singularities and Groups in Bifurcation Theory. Vol I,", Springer, (1985).   Google Scholar

[8]

M. Golubitsky, I Stewart and D. Schaeffer, "Singularities and Groups in Bifurcation Theory. Vol II,", Springer, (1988).   Google Scholar

[9]

M. Jones, Small amplitude capillary-gravity waves in a channel of finite depth,, Glasgow Math. J., 31 (1989), 465.   Google Scholar

[10]

M. Jones, Nonlinear ripples of Kelvin-Helmholtz type which arise from an interfacial mode interaction,, J. Fluid Mech., 341 (1997), 295.  doi: 10.1017/S0022112097005624.  Google Scholar

[11]

M. Jones, A system of equations which predicts the nonlinear evolution of a wave packet due to a fluid-fluid interaction under a narrow bandwidth assumption,, Fluid Dyn. Res., 21 (1997), 455.  doi: 10.1016/S0169-5983(97)00024-5.  Google Scholar

[12]

M. Jones, Group invariances, unfoldings and the bifurcation of capillary-gravity waves,, Int. J. Bif. Chaos, 7 (1997), 1243.  doi: 10.1142/S021812749700100X.  Google Scholar

[13]

M. Jones and J. F. Toland, Symmetry and the bifurcation of capillary-gravity waves,, Arch. Rat. Mech. Anal., 96 (1986), 29.  doi: 10.1007/BF00251412.  Google Scholar

[14]

N. Kotchine, Determination rigoureuse des ondes permanentes d'ampleur finie a la surface de seperation deux liquides de profondeur finie,, Math. Ann., 98 (1928), 582.  doi: 10.1007/BF01451610.  Google Scholar

[15]

L. M. Milne-Thomson, "Theretical Hydrodynamics," 4th, edition, (1960).   Google Scholar

[16]

H. Okamoto, On the problem of water-waves of permanent configuration,, Nonlinear Analysis, 14 (1990), 469.  doi: 10.1016/0362-546X(90)90035-F.  Google Scholar

[17]

H. Okamoto, Interfacial progressive water waves- a singularity theoretic view,, Tohoku Math. J., 49 (1997), 33.   Google Scholar

[18]

H. Okamoto and M. Shoji, Remarks on the bifurcation of two dimensional capillary-gravity waves of finite depth,, Publ. Res. Inst. Math. Sci., 30 (1994), 611.  doi: 10.2977/prims/1195165792.  Google Scholar

[19]

J. F. Toland and M. C. W. Jones, The bifurcation and secondary bifurcation of capillary-gravity waves,, Proc. R. Soc. Lond., 399 (1985), 391.  doi: 10.1098/rspa.1985.0063.  Google Scholar

[1]

Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021021

[2]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

[3]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[4]

Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189

[5]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[6]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[7]

Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352

[8]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[9]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[10]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[11]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[12]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[13]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[14]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[15]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[16]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[17]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[18]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[19]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[20]

Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]