-
Previous Article
On a general class of free boundary problems for European-style installment options with continuous payment plan
- CPAA Home
- This Issue
-
Next Article
The inverse Fueter mapping theorem
The bifurcation of interfacial capillary-gravity waves under O(2) symmetry
1. | School of Mathematics, Kingston University, Kingston-on-Thames, KT1 2EE01103, United Kingdom |
References:
[1] |
D. Armbruster and G. Dangelmayr, Coupled stationary bifurcations in nonflux boundary value problems,, Math. Proc. Camb. Phil. Soc., 101 (1987), 167.
doi: 10.1017/S0305004100066500. |
[2] |
N. K. Bari, "A Treatise on Trigonometric Series,", Pergamon Press, (1964).
|
[3] |
B. Chen and P. G. Saffman, Steady capillary-gravity waves in deep water-1.weakly nonlinear waves,, Stud. App. Math., 60 (1979), 183.
|
[4] |
P. Christodoulides and F. Dias, Stability of capillary-gravity interfacial waves between two bounded fluids,, Phys. Fluids, 70 (1995), 3013.
doi: 10.1063/1.868678. |
[5] |
P. Christodoulides and F. Dias, Resonant capillary-gravity interfacial waves,, J. Fluid Mech., 265 (1994), 303.
doi: 10.1017/S0022112094000856. |
[6] |
H. Fujii, M. Mimura and Y. Nishiura, A picture of the global bifurcation diagram in ecological interacting and diffusing systems,, Physica D, 5 (1982), 1.
doi: 10.1016/0167-2789(82)90048-3. |
[7] |
M. Golubitsky and D. Schaeffer, "Singularities and Groups in Bifurcation Theory. Vol I,", Springer, (1985).
|
[8] |
M. Golubitsky, I Stewart and D. Schaeffer, "Singularities and Groups in Bifurcation Theory. Vol II,", Springer, (1988).
|
[9] |
M. Jones, Small amplitude capillary-gravity waves in a channel of finite depth,, Glasgow Math. J., 31 (1989), 465.
|
[10] |
M. Jones, Nonlinear ripples of Kelvin-Helmholtz type which arise from an interfacial mode interaction,, J. Fluid Mech., 341 (1997), 295.
doi: 10.1017/S0022112097005624. |
[11] |
M. Jones, A system of equations which predicts the nonlinear evolution of a wave packet due to a fluid-fluid interaction under a narrow bandwidth assumption,, Fluid Dyn. Res., 21 (1997), 455.
doi: 10.1016/S0169-5983(97)00024-5. |
[12] |
M. Jones, Group invariances, unfoldings and the bifurcation of capillary-gravity waves,, Int. J. Bif. Chaos, 7 (1997), 1243.
doi: 10.1142/S021812749700100X. |
[13] |
M. Jones and J. F. Toland, Symmetry and the bifurcation of capillary-gravity waves,, Arch. Rat. Mech. Anal., 96 (1986), 29.
doi: 10.1007/BF00251412. |
[14] |
N. Kotchine, Determination rigoureuse des ondes permanentes d'ampleur finie a la surface de seperation deux liquides de profondeur finie,, Math. Ann., 98 (1928), 582.
doi: 10.1007/BF01451610. |
[15] |
L. M. Milne-Thomson, "Theretical Hydrodynamics," 4th, edition, (1960).
|
[16] |
H. Okamoto, On the problem of water-waves of permanent configuration,, Nonlinear Analysis, 14 (1990), 469.
doi: 10.1016/0362-546X(90)90035-F. |
[17] |
H. Okamoto, Interfacial progressive water waves- a singularity theoretic view,, Tohoku Math. J., 49 (1997), 33.
|
[18] |
H. Okamoto and M. Shoji, Remarks on the bifurcation of two dimensional capillary-gravity waves of finite depth,, Publ. Res. Inst. Math. Sci., 30 (1994), 611.
doi: 10.2977/prims/1195165792. |
[19] |
J. F. Toland and M. C. W. Jones, The bifurcation and secondary bifurcation of capillary-gravity waves,, Proc. R. Soc. Lond., 399 (1985), 391.
doi: 10.1098/rspa.1985.0063. |
show all references
References:
[1] |
D. Armbruster and G. Dangelmayr, Coupled stationary bifurcations in nonflux boundary value problems,, Math. Proc. Camb. Phil. Soc., 101 (1987), 167.
doi: 10.1017/S0305004100066500. |
[2] |
N. K. Bari, "A Treatise on Trigonometric Series,", Pergamon Press, (1964).
|
[3] |
B. Chen and P. G. Saffman, Steady capillary-gravity waves in deep water-1.weakly nonlinear waves,, Stud. App. Math., 60 (1979), 183.
|
[4] |
P. Christodoulides and F. Dias, Stability of capillary-gravity interfacial waves between two bounded fluids,, Phys. Fluids, 70 (1995), 3013.
doi: 10.1063/1.868678. |
[5] |
P. Christodoulides and F. Dias, Resonant capillary-gravity interfacial waves,, J. Fluid Mech., 265 (1994), 303.
doi: 10.1017/S0022112094000856. |
[6] |
H. Fujii, M. Mimura and Y. Nishiura, A picture of the global bifurcation diagram in ecological interacting and diffusing systems,, Physica D, 5 (1982), 1.
doi: 10.1016/0167-2789(82)90048-3. |
[7] |
M. Golubitsky and D. Schaeffer, "Singularities and Groups in Bifurcation Theory. Vol I,", Springer, (1985).
|
[8] |
M. Golubitsky, I Stewart and D. Schaeffer, "Singularities and Groups in Bifurcation Theory. Vol II,", Springer, (1988).
|
[9] |
M. Jones, Small amplitude capillary-gravity waves in a channel of finite depth,, Glasgow Math. J., 31 (1989), 465.
|
[10] |
M. Jones, Nonlinear ripples of Kelvin-Helmholtz type which arise from an interfacial mode interaction,, J. Fluid Mech., 341 (1997), 295.
doi: 10.1017/S0022112097005624. |
[11] |
M. Jones, A system of equations which predicts the nonlinear evolution of a wave packet due to a fluid-fluid interaction under a narrow bandwidth assumption,, Fluid Dyn. Res., 21 (1997), 455.
doi: 10.1016/S0169-5983(97)00024-5. |
[12] |
M. Jones, Group invariances, unfoldings and the bifurcation of capillary-gravity waves,, Int. J. Bif. Chaos, 7 (1997), 1243.
doi: 10.1142/S021812749700100X. |
[13] |
M. Jones and J. F. Toland, Symmetry and the bifurcation of capillary-gravity waves,, Arch. Rat. Mech. Anal., 96 (1986), 29.
doi: 10.1007/BF00251412. |
[14] |
N. Kotchine, Determination rigoureuse des ondes permanentes d'ampleur finie a la surface de seperation deux liquides de profondeur finie,, Math. Ann., 98 (1928), 582.
doi: 10.1007/BF01451610. |
[15] |
L. M. Milne-Thomson, "Theretical Hydrodynamics," 4th, edition, (1960).
|
[16] |
H. Okamoto, On the problem of water-waves of permanent configuration,, Nonlinear Analysis, 14 (1990), 469.
doi: 10.1016/0362-546X(90)90035-F. |
[17] |
H. Okamoto, Interfacial progressive water waves- a singularity theoretic view,, Tohoku Math. J., 49 (1997), 33.
|
[18] |
H. Okamoto and M. Shoji, Remarks on the bifurcation of two dimensional capillary-gravity waves of finite depth,, Publ. Res. Inst. Math. Sci., 30 (1994), 611.
doi: 10.2977/prims/1195165792. |
[19] |
J. F. Toland and M. C. W. Jones, The bifurcation and secondary bifurcation of capillary-gravity waves,, Proc. R. Soc. Lond., 399 (1985), 391.
doi: 10.1098/rspa.1985.0063. |
[1] |
Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021021 |
[2] |
Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124 |
[3] |
Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415 |
[4] |
Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189 |
[5] |
Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 |
[6] |
Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349 |
[7] |
Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352 |
[8] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
[9] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[10] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[11] |
Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020378 |
[12] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[13] |
Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020464 |
[14] |
Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269 |
[15] |
Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108 |
[16] |
Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320 |
[17] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[18] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[19] |
Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053 |
[20] |
Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]