July  2011, 10(4): 1205-1224. doi: 10.3934/cpaa.2011.10.1205

On a general class of free boundary problems for European-style installment options with continuous payment plan

1. 

Department of Economics, Faculty of Economics "Federico Caffè", University of Rome III, Via Silvio D'Amico 77, 00145 Rome, Italy

Received  June 2010 Revised  December 2010 Published  April 2011

In this paper we present an integral equation approach for the valuation of European-style installment derivatives when the payment plan is assumed to be a continuous function of the asset price and time. The contribution of this study is threefold. First, we show that in the Black-Scholes model the option pricing problem can be formulated as a free boundary problem under very general conditions on payoff structure and payment schedule. Second, by applying a Fourier transform-based solution technique, we derive a recursive integral equation for the free boundary along with an analytic representation of the option price. Third, based on these results, we propose a unified framework which generalizes the existing methods and is capable of dealing with a wide range of monotonic payoff functions and continuous payment plans. Finally, by using the illustrative example of European vanilla installment call options, an explicit pricing formula is obtained for time-varying payment schedules.
Citation: Pierangelo Ciurlia. On a general class of free boundary problems for European-style installment options with continuous payment plan. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1205-1224. doi: 10.3934/cpaa.2011.10.1205
References:
[1]

G. Alobaidi, R. Mallier and A. S. Deakin, Laplace transforms and installment options,, Mathematical Models and Methods in Applied Sciences, 14 (2004), 1167. doi: 10.1142/S0218202504003581. Google Scholar

[2]

G. Alobaidi and R. Mallier, Installment options close to expiry,, Journal of Applied Mathematics and Stochastic Analysis, (2006), 1. doi: 10.1155/JAMSA/2006/60824. Google Scholar

[3]

H. Ben-Ameur, M. Breton and P. François, A dynamic programming approach to price installment options,, European Journal of Operational Research, 169 (2006), 667. doi: 10.1016/j.ejor.2004.05.009. Google Scholar

[4]

P. Carr, R. Jarrow and R. Myneni, Alternative characterizations of American put options,, Mathematical Finance, 2 (1992), 87. doi: 10.1111/j.1467-9965.1992.tb00040.x. Google Scholar

[5]

P. Ciurlia, On the evaluation of European continuous-installment options,, Department of Economics Working paper, (2010). Google Scholar

[6]

P. Ciurlia and C. Caperdoni, A note on the pricing of perpetual continuous-installment options,, Mathematical Methods in Economics and Finance, 4 (2009), 11. Google Scholar

[7]

P. Ciurlia and I. Roko, Valuation of American continuous-installment options,, Computational Economics, 25 (2005), 143. doi: 10.1007/s10614-005-6279-4. Google Scholar

[8]

M. Davis, W. Schachermayer and R. Tompkins, Pricing, no-arbitrage bounds and robust hedging of instalment options,, Quantitative Finance, 1 (2001), 597. doi: 10.1088/1469-7688/1/6/302. Google Scholar

[9]

M. Davis, W. Schachermayer and R. Tompkins, Installment options and static hedging,, Journal of Risk Finance, 3 (2002), 46. doi: 10.1108/eb043487. Google Scholar

[10]

S. Griebsch, C. Kühn and U. Wystup, Instalment options: A closed-form solution and the limiting case,, in, (2008), 211. doi: 10.1007/978-3-540-69532-5_12. Google Scholar

[11]

S. D. Jacka, Optimal stopping and the American put,, Mathematical Finance, 1 (1991), 1. doi: 10.1111/j.1467-9965.1991.tb00007.x. Google Scholar

[12]

F. Karsenty and J. Sikorav, Installment plan,, Risk, 6 (1993), 36. Google Scholar

[13]

I. J. Kim, The analytical valuation of American options,, Review of Financial Studies, 3 (1990), 547. doi: 10.1093/rfs/3.4.547. Google Scholar

[14]

T. Kimura, American continuous-installment options: valuation and premium decomposition,, SIAM Journal on Applied Mathematics, 70 (2009), 803. doi: 10.1137/080740969. Google Scholar

[15]

T. Kimura, Valuing continuous-installment options,, European Journal of Operational Research, 201 (2010), 222. doi: 10.1016/j.ejor.2009.02.010. Google Scholar

[16]

H. P. McKean, Appendix: A free boundary problem for the heat equation arising from a problem in mathematical economics,, Industrial Management Review, 6 (1965), 32. Google Scholar

[17]

Z. Yang and F. Yi, A variational inequality arising from American installment call options pricing,, Journal of Mathematical Analysis and Applications, 357 (2009), 54. doi: 10.1016/j.jmaa.2009.03.045. Google Scholar

[18]

F. Yi, Z. Yang and X. Wang, A variational inequality arising from European installment call options pricing,, SIAM Journal on Mathematical Analysis, 40 (2008), 306. doi: 10.1137/060670353. Google Scholar

show all references

References:
[1]

G. Alobaidi, R. Mallier and A. S. Deakin, Laplace transforms and installment options,, Mathematical Models and Methods in Applied Sciences, 14 (2004), 1167. doi: 10.1142/S0218202504003581. Google Scholar

[2]

G. Alobaidi and R. Mallier, Installment options close to expiry,, Journal of Applied Mathematics and Stochastic Analysis, (2006), 1. doi: 10.1155/JAMSA/2006/60824. Google Scholar

[3]

H. Ben-Ameur, M. Breton and P. François, A dynamic programming approach to price installment options,, European Journal of Operational Research, 169 (2006), 667. doi: 10.1016/j.ejor.2004.05.009. Google Scholar

[4]

P. Carr, R. Jarrow and R. Myneni, Alternative characterizations of American put options,, Mathematical Finance, 2 (1992), 87. doi: 10.1111/j.1467-9965.1992.tb00040.x. Google Scholar

[5]

P. Ciurlia, On the evaluation of European continuous-installment options,, Department of Economics Working paper, (2010). Google Scholar

[6]

P. Ciurlia and C. Caperdoni, A note on the pricing of perpetual continuous-installment options,, Mathematical Methods in Economics and Finance, 4 (2009), 11. Google Scholar

[7]

P. Ciurlia and I. Roko, Valuation of American continuous-installment options,, Computational Economics, 25 (2005), 143. doi: 10.1007/s10614-005-6279-4. Google Scholar

[8]

M. Davis, W. Schachermayer and R. Tompkins, Pricing, no-arbitrage bounds and robust hedging of instalment options,, Quantitative Finance, 1 (2001), 597. doi: 10.1088/1469-7688/1/6/302. Google Scholar

[9]

M. Davis, W. Schachermayer and R. Tompkins, Installment options and static hedging,, Journal of Risk Finance, 3 (2002), 46. doi: 10.1108/eb043487. Google Scholar

[10]

S. Griebsch, C. Kühn and U. Wystup, Instalment options: A closed-form solution and the limiting case,, in, (2008), 211. doi: 10.1007/978-3-540-69532-5_12. Google Scholar

[11]

S. D. Jacka, Optimal stopping and the American put,, Mathematical Finance, 1 (1991), 1. doi: 10.1111/j.1467-9965.1991.tb00007.x. Google Scholar

[12]

F. Karsenty and J. Sikorav, Installment plan,, Risk, 6 (1993), 36. Google Scholar

[13]

I. J. Kim, The analytical valuation of American options,, Review of Financial Studies, 3 (1990), 547. doi: 10.1093/rfs/3.4.547. Google Scholar

[14]

T. Kimura, American continuous-installment options: valuation and premium decomposition,, SIAM Journal on Applied Mathematics, 70 (2009), 803. doi: 10.1137/080740969. Google Scholar

[15]

T. Kimura, Valuing continuous-installment options,, European Journal of Operational Research, 201 (2010), 222. doi: 10.1016/j.ejor.2009.02.010. Google Scholar

[16]

H. P. McKean, Appendix: A free boundary problem for the heat equation arising from a problem in mathematical economics,, Industrial Management Review, 6 (1965), 32. Google Scholar

[17]

Z. Yang and F. Yi, A variational inequality arising from American installment call options pricing,, Journal of Mathematical Analysis and Applications, 357 (2009), 54. doi: 10.1016/j.jmaa.2009.03.045. Google Scholar

[18]

F. Yi, Z. Yang and X. Wang, A variational inequality arising from European installment call options pricing,, SIAM Journal on Mathematical Analysis, 40 (2008), 306. doi: 10.1137/060670353. Google Scholar

[1]

Barbara Brandolini, Francesco Chiacchio, Jeffrey J. Langford. Estimates for sums of eigenvalues of the free plate via the fourier transform. Communications on Pure & Applied Analysis, 2020, 19 (1) : 113-122. doi: 10.3934/cpaa.2020007

[2]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[3]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[4]

Alexander Alekseenko, Jeffrey Limbacher. Evaluating high order discontinuous Galerkin discretization of the Boltzmann collision integral in $ \mathcal{O}(N^2) $ operations using the discrete fourier transform. Kinetic & Related Models, 2019, 12 (4) : 703-726. doi: 10.3934/krm.2019027

[5]

Georgi Grahovski, Rossen Ivanov. Generalised Fourier transform and perturbations to soliton equations. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 579-595. doi: 10.3934/dcdsb.2009.12.579

[6]

Juan H. Arredondo, Francisco J. Mendoza, Alfredo Reyes. On the norm continuity of the hk-fourier transform. Electronic Research Announcements, 2018, 25: 36-47. doi: 10.3934/era.2018.25.005

[7]

Y. T. Li, R. Wong. Integral and series representations of the dirac delta function. Communications on Pure & Applied Analysis, 2008, 7 (2) : 229-247. doi: 10.3934/cpaa.2008.7.229

[8]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[9]

Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa. A one dimensional free boundary problem for adsorption phenomena. Networks & Heterogeneous Media, 2014, 9 (4) : 655-668. doi: 10.3934/nhm.2014.9.655

[10]

Yongzhi Xu. A free boundary problem model of ductal carcinoma in situ. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 337-348. doi: 10.3934/dcdsb.2004.4.337

[11]

Anna Lisa Amadori. Contour enhancement via a singular free boundary problem. Conference Publications, 2007, 2007 (Special) : 44-53. doi: 10.3934/proc.2007.2007.44

[12]

Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293

[13]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

[14]

Micah Webster, Patrick Guidotti. Boundary dynamics of a two-dimensional diffusive free boundary problem. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 713-736. doi: 10.3934/dcds.2010.26.713

[15]

Kanghui Guo and Demetrio Labate. Sparse shearlet representation of Fourier integral operators. Electronic Research Announcements, 2007, 14: 7-19. doi: 10.3934/era.2007.14.7

[16]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure & Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[17]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[18]

Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems & Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023

[19]

Michael Music. The nonlinear Fourier transform for two-dimensional subcritical potentials. Inverse Problems & Imaging, 2014, 8 (4) : 1151-1167. doi: 10.3934/ipi.2014.8.1151

[20]

Jan-Cornelius Molnar. On two-sided estimates for the nonlinear Fourier transform of KdV. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3339-3356. doi: 10.3934/dcds.2016.36.3339

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]