July  2011, 10(4): 1205-1224. doi: 10.3934/cpaa.2011.10.1205

On a general class of free boundary problems for European-style installment options with continuous payment plan

1. 

Department of Economics, Faculty of Economics "Federico Caffè", University of Rome III, Via Silvio D'Amico 77, 00145 Rome, Italy

Received  June 2010 Revised  December 2010 Published  April 2011

In this paper we present an integral equation approach for the valuation of European-style installment derivatives when the payment plan is assumed to be a continuous function of the asset price and time. The contribution of this study is threefold. First, we show that in the Black-Scholes model the option pricing problem can be formulated as a free boundary problem under very general conditions on payoff structure and payment schedule. Second, by applying a Fourier transform-based solution technique, we derive a recursive integral equation for the free boundary along with an analytic representation of the option price. Third, based on these results, we propose a unified framework which generalizes the existing methods and is capable of dealing with a wide range of monotonic payoff functions and continuous payment plans. Finally, by using the illustrative example of European vanilla installment call options, an explicit pricing formula is obtained for time-varying payment schedules.
Citation: Pierangelo Ciurlia. On a general class of free boundary problems for European-style installment options with continuous payment plan. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1205-1224. doi: 10.3934/cpaa.2011.10.1205
References:
[1]

G. Alobaidi, R. Mallier and A. S. Deakin, Laplace transforms and installment options,, Mathematical Models and Methods in Applied Sciences, 14 (2004), 1167.  doi: 10.1142/S0218202504003581.  Google Scholar

[2]

G. Alobaidi and R. Mallier, Installment options close to expiry,, Journal of Applied Mathematics and Stochastic Analysis, (2006), 1.  doi: 10.1155/JAMSA/2006/60824.  Google Scholar

[3]

H. Ben-Ameur, M. Breton and P. François, A dynamic programming approach to price installment options,, European Journal of Operational Research, 169 (2006), 667.  doi: 10.1016/j.ejor.2004.05.009.  Google Scholar

[4]

P. Carr, R. Jarrow and R. Myneni, Alternative characterizations of American put options,, Mathematical Finance, 2 (1992), 87.  doi: 10.1111/j.1467-9965.1992.tb00040.x.  Google Scholar

[5]

P. Ciurlia, On the evaluation of European continuous-installment options,, Department of Economics Working paper, (2010).   Google Scholar

[6]

P. Ciurlia and C. Caperdoni, A note on the pricing of perpetual continuous-installment options,, Mathematical Methods in Economics and Finance, 4 (2009), 11.   Google Scholar

[7]

P. Ciurlia and I. Roko, Valuation of American continuous-installment options,, Computational Economics, 25 (2005), 143.  doi: 10.1007/s10614-005-6279-4.  Google Scholar

[8]

M. Davis, W. Schachermayer and R. Tompkins, Pricing, no-arbitrage bounds and robust hedging of instalment options,, Quantitative Finance, 1 (2001), 597.  doi: 10.1088/1469-7688/1/6/302.  Google Scholar

[9]

M. Davis, W. Schachermayer and R. Tompkins, Installment options and static hedging,, Journal of Risk Finance, 3 (2002), 46.  doi: 10.1108/eb043487.  Google Scholar

[10]

S. Griebsch, C. Kühn and U. Wystup, Instalment options: A closed-form solution and the limiting case,, in, (2008), 211.  doi: 10.1007/978-3-540-69532-5_12.  Google Scholar

[11]

S. D. Jacka, Optimal stopping and the American put,, Mathematical Finance, 1 (1991), 1.  doi: 10.1111/j.1467-9965.1991.tb00007.x.  Google Scholar

[12]

F. Karsenty and J. Sikorav, Installment plan,, Risk, 6 (1993), 36.   Google Scholar

[13]

I. J. Kim, The analytical valuation of American options,, Review of Financial Studies, 3 (1990), 547.  doi: 10.1093/rfs/3.4.547.  Google Scholar

[14]

T. Kimura, American continuous-installment options: valuation and premium decomposition,, SIAM Journal on Applied Mathematics, 70 (2009), 803.  doi: 10.1137/080740969.  Google Scholar

[15]

T. Kimura, Valuing continuous-installment options,, European Journal of Operational Research, 201 (2010), 222.  doi: 10.1016/j.ejor.2009.02.010.  Google Scholar

[16]

H. P. McKean, Appendix: A free boundary problem for the heat equation arising from a problem in mathematical economics,, Industrial Management Review, 6 (1965), 32.   Google Scholar

[17]

Z. Yang and F. Yi, A variational inequality arising from American installment call options pricing,, Journal of Mathematical Analysis and Applications, 357 (2009), 54.  doi: 10.1016/j.jmaa.2009.03.045.  Google Scholar

[18]

F. Yi, Z. Yang and X. Wang, A variational inequality arising from European installment call options pricing,, SIAM Journal on Mathematical Analysis, 40 (2008), 306.  doi: 10.1137/060670353.  Google Scholar

show all references

References:
[1]

G. Alobaidi, R. Mallier and A. S. Deakin, Laplace transforms and installment options,, Mathematical Models and Methods in Applied Sciences, 14 (2004), 1167.  doi: 10.1142/S0218202504003581.  Google Scholar

[2]

G. Alobaidi and R. Mallier, Installment options close to expiry,, Journal of Applied Mathematics and Stochastic Analysis, (2006), 1.  doi: 10.1155/JAMSA/2006/60824.  Google Scholar

[3]

H. Ben-Ameur, M. Breton and P. François, A dynamic programming approach to price installment options,, European Journal of Operational Research, 169 (2006), 667.  doi: 10.1016/j.ejor.2004.05.009.  Google Scholar

[4]

P. Carr, R. Jarrow and R. Myneni, Alternative characterizations of American put options,, Mathematical Finance, 2 (1992), 87.  doi: 10.1111/j.1467-9965.1992.tb00040.x.  Google Scholar

[5]

P. Ciurlia, On the evaluation of European continuous-installment options,, Department of Economics Working paper, (2010).   Google Scholar

[6]

P. Ciurlia and C. Caperdoni, A note on the pricing of perpetual continuous-installment options,, Mathematical Methods in Economics and Finance, 4 (2009), 11.   Google Scholar

[7]

P. Ciurlia and I. Roko, Valuation of American continuous-installment options,, Computational Economics, 25 (2005), 143.  doi: 10.1007/s10614-005-6279-4.  Google Scholar

[8]

M. Davis, W. Schachermayer and R. Tompkins, Pricing, no-arbitrage bounds and robust hedging of instalment options,, Quantitative Finance, 1 (2001), 597.  doi: 10.1088/1469-7688/1/6/302.  Google Scholar

[9]

M. Davis, W. Schachermayer and R. Tompkins, Installment options and static hedging,, Journal of Risk Finance, 3 (2002), 46.  doi: 10.1108/eb043487.  Google Scholar

[10]

S. Griebsch, C. Kühn and U. Wystup, Instalment options: A closed-form solution and the limiting case,, in, (2008), 211.  doi: 10.1007/978-3-540-69532-5_12.  Google Scholar

[11]

S. D. Jacka, Optimal stopping and the American put,, Mathematical Finance, 1 (1991), 1.  doi: 10.1111/j.1467-9965.1991.tb00007.x.  Google Scholar

[12]

F. Karsenty and J. Sikorav, Installment plan,, Risk, 6 (1993), 36.   Google Scholar

[13]

I. J. Kim, The analytical valuation of American options,, Review of Financial Studies, 3 (1990), 547.  doi: 10.1093/rfs/3.4.547.  Google Scholar

[14]

T. Kimura, American continuous-installment options: valuation and premium decomposition,, SIAM Journal on Applied Mathematics, 70 (2009), 803.  doi: 10.1137/080740969.  Google Scholar

[15]

T. Kimura, Valuing continuous-installment options,, European Journal of Operational Research, 201 (2010), 222.  doi: 10.1016/j.ejor.2009.02.010.  Google Scholar

[16]

H. P. McKean, Appendix: A free boundary problem for the heat equation arising from a problem in mathematical economics,, Industrial Management Review, 6 (1965), 32.   Google Scholar

[17]

Z. Yang and F. Yi, A variational inequality arising from American installment call options pricing,, Journal of Mathematical Analysis and Applications, 357 (2009), 54.  doi: 10.1016/j.jmaa.2009.03.045.  Google Scholar

[18]

F. Yi, Z. Yang and X. Wang, A variational inequality arising from European installment call options pricing,, SIAM Journal on Mathematical Analysis, 40 (2008), 306.  doi: 10.1137/060670353.  Google Scholar

[1]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[2]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[3]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[4]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[5]

Wai-Ki Ching, Jia-Wen Gu, Harry Zheng. On correlated defaults and incomplete information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 889-908. doi: 10.3934/jimo.2020003

[6]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[7]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[8]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[9]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[10]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[11]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[12]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[13]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[14]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[15]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[16]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[17]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[18]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[19]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[20]

Claude-Michel Brauner, Luca Lorenzi. Instability of free interfaces in premixed flame propagation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 575-596. doi: 10.3934/dcdss.2020363

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]