• Previous Article
    On the support of solutions to the Kadomtsev-Petviashvili (KP-II) equation
  • CPAA Home
  • This Issue
  • Next Article
    On a general class of free boundary problems for European-style installment options with continuous payment plan
July  2011, 10(4): 1225-1237. doi: 10.3934/cpaa.2011.10.1225

Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation

1. 

Mathematical Institute, Tohoku University, Sendai 980-8578

Received  July 2010 Revised  October 2010 Published  April 2011

We consider the Cauchy problem for a parabolic partial differential equation with a power nonlinearity. It was shown in our previous paper that in some parameter range, the problem has a solution with a moving singularity that becomes anomalous in finite time. Our concern is a blow-up solution with a moving singularity. In this paper, we show that there exists a solution with a moving singularity such that it blows up at space infinity.
Citation: Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225
References:
[1]

C.-C. Chen and C.-S. Lin, Existence of positive weak solutions with a prescribed singular set of semilinear elliptic equations,, J. Geometric Analysis, 9 (1999), 221.   Google Scholar

[2]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 16 (1966), 105.   Google Scholar

[3]

Y. Giga and N. Umeda, Blow-up directions at space infinity for solutions of semilinear heat equations,, Bol. Soc. Parana. Mat., 23 (2005), 9.  doi: 10.5269/bspm.v23i1-2.7450.  Google Scholar

[4]

Y. Giga and N. Umeda, On blow-up at space infinity for semilinear heat equations,, J. Math. Anal. Appl., 316 (2006), 538.  doi: 10.1016/j.jmaa.2005.05.007.  Google Scholar

[5]

A. A. Lacey, The form of blow-up for nonlinear parabolic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 98 (1984), 183.   Google Scholar

[6]

O. A. Ladyž zenskaja, V. A. Solonnikov and N. M. Ural'ceva, "Linear and Quasi-linear Equations of Parabolic Type,", Amer. Math. Soc., 23 (1968).   Google Scholar

[7]

N. Mizoguchi and E. Yanagida, Life span of solutions for a semilinear parabolic problem with small diffusion,, J. Math. Anal. Appl., 261 (2001), 350.  doi: 10.1006/jmaa.2001.7530.  Google Scholar

[8]

P. Quittner and Ph. Souplet, "Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States," Birkhäuser Advanced Texts,, Birkh\, (2007).   Google Scholar

[9]

S. Sato and E. Yanagida, Solutions with Moving Singularities for a Semilinear Parabolic Equation,, J. Differential Equations, 246 (2009), 724.  doi: 10.1016/j.jde.2008.09.004.  Google Scholar

[10]

S. Sato and E. Yanagida, Forward self-similar solution with a moving singularity for a semilinear parabolic equation,, Discrete and Continuous Dynamical Systems-Series A, 26 (2010), 313.  doi: 10.3934/dcds.2010.26.313.  Google Scholar

[11]

S. Sato and E. Yanagida, Appearance of anomalous singularities in a semilinear parabolic equation,, preprint., ().   Google Scholar

[12]

Y. Seki, On directional blow-up for quasilinear parabolic equations with fast diffusion,, J. Math. Anal. Appl., 338 (2008), 572.  doi: 10.1016/j.jmaa.2007.05.033.  Google Scholar

[13]

Y. Seki, R. Suzuki and N. Umeda, Blow-up directions for quasilinear parabolic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 379.  doi: 10.1017/S0308210506000801.  Google Scholar

[14]

M. Shimojō, The global profile of blow-up at space infinity in semilinear heat equations,, J. Math. Kyoto Univ., 48 (2008), 339.   Google Scholar

[15]

L. Véron, "Singularities of Solutions of Second Order Quasilinear Equations,", Pitman Research Notes in Mathematics Series, 353 (1996).   Google Scholar

show all references

References:
[1]

C.-C. Chen and C.-S. Lin, Existence of positive weak solutions with a prescribed singular set of semilinear elliptic equations,, J. Geometric Analysis, 9 (1999), 221.   Google Scholar

[2]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 16 (1966), 105.   Google Scholar

[3]

Y. Giga and N. Umeda, Blow-up directions at space infinity for solutions of semilinear heat equations,, Bol. Soc. Parana. Mat., 23 (2005), 9.  doi: 10.5269/bspm.v23i1-2.7450.  Google Scholar

[4]

Y. Giga and N. Umeda, On blow-up at space infinity for semilinear heat equations,, J. Math. Anal. Appl., 316 (2006), 538.  doi: 10.1016/j.jmaa.2005.05.007.  Google Scholar

[5]

A. A. Lacey, The form of blow-up for nonlinear parabolic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 98 (1984), 183.   Google Scholar

[6]

O. A. Ladyž zenskaja, V. A. Solonnikov and N. M. Ural'ceva, "Linear and Quasi-linear Equations of Parabolic Type,", Amer. Math. Soc., 23 (1968).   Google Scholar

[7]

N. Mizoguchi and E. Yanagida, Life span of solutions for a semilinear parabolic problem with small diffusion,, J. Math. Anal. Appl., 261 (2001), 350.  doi: 10.1006/jmaa.2001.7530.  Google Scholar

[8]

P. Quittner and Ph. Souplet, "Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States," Birkhäuser Advanced Texts,, Birkh\, (2007).   Google Scholar

[9]

S. Sato and E. Yanagida, Solutions with Moving Singularities for a Semilinear Parabolic Equation,, J. Differential Equations, 246 (2009), 724.  doi: 10.1016/j.jde.2008.09.004.  Google Scholar

[10]

S. Sato and E. Yanagida, Forward self-similar solution with a moving singularity for a semilinear parabolic equation,, Discrete and Continuous Dynamical Systems-Series A, 26 (2010), 313.  doi: 10.3934/dcds.2010.26.313.  Google Scholar

[11]

S. Sato and E. Yanagida, Appearance of anomalous singularities in a semilinear parabolic equation,, preprint., ().   Google Scholar

[12]

Y. Seki, On directional blow-up for quasilinear parabolic equations with fast diffusion,, J. Math. Anal. Appl., 338 (2008), 572.  doi: 10.1016/j.jmaa.2007.05.033.  Google Scholar

[13]

Y. Seki, R. Suzuki and N. Umeda, Blow-up directions for quasilinear parabolic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 379.  doi: 10.1017/S0308210506000801.  Google Scholar

[14]

M. Shimojō, The global profile of blow-up at space infinity in semilinear heat equations,, J. Math. Kyoto Univ., 48 (2008), 339.   Google Scholar

[15]

L. Véron, "Singularities of Solutions of Second Order Quasilinear Equations,", Pitman Research Notes in Mathematics Series, 353 (1996).   Google Scholar

[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[2]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[3]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[4]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[5]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[6]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[7]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[8]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[9]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[10]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[11]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[12]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[13]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[14]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[15]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[16]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[17]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[18]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[19]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[20]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]