July  2011, 10(4): 1257-1266. doi: 10.3934/cpaa.2011.10.1257

On the similarity of Hamiltonian and reversible vector fields in 4D

1. 

Department of Mathematics, IMECC, Unicamp, 13083-970, Campinas SP, Brazil

2. 

Departamento de Matemática, Universidade Estadual de Campinas, Caixa Postal 6065, 13083-970, Campinas, S.P., Brazil

Received  July 2010 Revised  September 2010 Published  April 2011

We study the existence of formal conjugacies between reversible vector fields and Hamiltonian vector fields in 4D around a generic singularity. We construct conjugacies for a generic class of reversible vector fields. We also show that reversible vector fields are formally orbitally equivalent to polynomial decoupled Hamiltonian vector fields. The main tool we employ is the normal form theory.
Citation: Ricardo Miranda Martins, Marco Antonio Teixeira. On the similarity of Hamiltonian and reversible vector fields in 4D. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1257-1266. doi: 10.3934/cpaa.2011.10.1257
References:
[1]

R. Abraham and J. Marsden, "Foundations of Mechanics,", Benjamin Cummings, (1978).   Google Scholar

[2]

V. I. Arnold, "Arnold's Problems,", Springer-Verlag, (2004).   Google Scholar

[3]

V. I. Arnold, "Geometrical Methods in the Theory of Ordinary Differential Equations,'', Springer-Verlag, (1988).   Google Scholar

[4]

G. D. Birkhoff, Dynamical systems with two degrees of freedom,, Trans. Amer. Math. Soc., 18 (1917), 199.  doi: 10.2307/1988861.  Google Scholar

[5]

R. L. Devaney, Reversible diffeomorphisms and flows,, Trans. Amer. Math. Soc., 218 (1976), 89.  doi: 10.2307/1997429.  Google Scholar

[6]

G. Gaeta, Normal Forms of reversible dynamical systems,, International Journal of Theoretical Physics, 33 (1994), 1917.  doi: 10.1007/BF00671033.  Google Scholar

[7]

A. Jacquemard, M. F. S. Lima and M. A. Teixeira, Degenerate resonances and branching of periodic orbits,, Annali di Matematica Pura ed Applicata, 187 (2008), 105.   Google Scholar

[8]

J. S. W. Lamb, M. F. S. Lima, R. M. Martins, M. A. Teixeira and J. Yang, On the Hamiltonian structure of normal forms at elliptic equilibria of reversible vector fields in $R^4$,, IMECC/Unicamp Research Report 05/10, (2010).   Google Scholar

[9]

J. C. van der Meer, J. A. Sanders and A. Vanderbauwhede, Hamiltonian Structure of the Reversible Nonsemisimple $1:1$ Resonance,, in, (1994), 221.   Google Scholar

[10]

G. B. Price, On reversible dynamical systems,, Trans. Amer. Math. Soc., 37 (1935), 51.  doi: 10.2307/1989695.  Google Scholar

[11]

M. A. Teixeira, Singularities of reversible vector fields,, Phys. D, 100 (1997), 101.  doi: 10.1016/S0167-2789(96)00183-2.  Google Scholar

show all references

References:
[1]

R. Abraham and J. Marsden, "Foundations of Mechanics,", Benjamin Cummings, (1978).   Google Scholar

[2]

V. I. Arnold, "Arnold's Problems,", Springer-Verlag, (2004).   Google Scholar

[3]

V. I. Arnold, "Geometrical Methods in the Theory of Ordinary Differential Equations,'', Springer-Verlag, (1988).   Google Scholar

[4]

G. D. Birkhoff, Dynamical systems with two degrees of freedom,, Trans. Amer. Math. Soc., 18 (1917), 199.  doi: 10.2307/1988861.  Google Scholar

[5]

R. L. Devaney, Reversible diffeomorphisms and flows,, Trans. Amer. Math. Soc., 218 (1976), 89.  doi: 10.2307/1997429.  Google Scholar

[6]

G. Gaeta, Normal Forms of reversible dynamical systems,, International Journal of Theoretical Physics, 33 (1994), 1917.  doi: 10.1007/BF00671033.  Google Scholar

[7]

A. Jacquemard, M. F. S. Lima and M. A. Teixeira, Degenerate resonances and branching of periodic orbits,, Annali di Matematica Pura ed Applicata, 187 (2008), 105.   Google Scholar

[8]

J. S. W. Lamb, M. F. S. Lima, R. M. Martins, M. A. Teixeira and J. Yang, On the Hamiltonian structure of normal forms at elliptic equilibria of reversible vector fields in $R^4$,, IMECC/Unicamp Research Report 05/10, (2010).   Google Scholar

[9]

J. C. van der Meer, J. A. Sanders and A. Vanderbauwhede, Hamiltonian Structure of the Reversible Nonsemisimple $1:1$ Resonance,, in, (1994), 221.   Google Scholar

[10]

G. B. Price, On reversible dynamical systems,, Trans. Amer. Math. Soc., 37 (1935), 51.  doi: 10.2307/1989695.  Google Scholar

[11]

M. A. Teixeira, Singularities of reversible vector fields,, Phys. D, 100 (1997), 101.  doi: 10.1016/S0167-2789(96)00183-2.  Google Scholar

[1]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[2]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097

[3]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[4]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[5]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[6]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[7]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[8]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[9]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[10]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (4)

[Back to Top]