-
Previous Article
Averaging of a 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external forces
- CPAA Home
- This Issue
-
Next Article
On the similarity of Hamiltonian and reversible vector fields in 4D
Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system
1. | Jiangsu Key Laboratory for NSLSCS, School of Mathematics Sciences, Nanjing Normal University, Nanjing 210046, Jiangsu, China, China |
$-\epsilon^2\Delta v+V(x)v+\psi(x)v=v^p, \quad x\in R^3,$
$-\Delta\psi=\frac{1}{\epsilon}v^2,\quad \lim_{|x|\rightarrow\infty}\psi(x)=0,\quad x\in R^3,$
where $\epsilon>0$, $p\in (3,5)$, $V$ is positive potential. We relate the number of solutions with topology of the set where $V$ attain their minimum value. By applying Ljusternik-Schnirelmann theory, we prove the multiplicity of solutions.
References:
[1] |
C. O. Alves and S. H. M. Soares, Existence and concentration of positive solutions for a class of gradient systems,, Nonlinear Differ. Equ. Appl., 12 (2005), 437.
doi: 10.1007/s00030-005-0021-8. |
[2] |
C. O. Alves, G. M. Figueiredo and M. F. Furtado, Multiplicity of solutions for elliptic systems via local mountain pass method,, Comm. Pure. Appl. Anal., 8 (2009), 1745.
doi: 10.3934/cpaa.2009.8.1745. |
[3] |
C. O. Alves and G. M. Figueiredo, On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in $R^N$,, J. Differential Equations, 246 (2009), 1288.
doi: 10.1016/j.jde.2008.08.004. |
[4] |
A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials,, Arch. Ration. Mech. Anal., 159 (2001), 253.
doi: 10.1007/s002050100152. |
[5] |
A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations,, J. Math. Anal. Appl., 345 (2008), 90.
doi: 10.1016/j.jmaa.2008.03.057. |
[6] |
A. Azzollini and A. Pomponio, A note on the ground state solutions for the nonlinear Schrödinger-Maxwell equations,, Boll. Unione Mat. Ital., 9 (2009), 93.
|
[7] |
V. Benci and G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology,, Cal. Var. Partial Differential Equations, 2 (1994), 29.
doi: 10.1007/BF01234314. |
[8] |
R. Benguria and H. Brezis, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules,, Comm. Math. Phys., 79 (1981), 167.
|
[9] |
J. Byeon and Z. Q. Wang, Standing waves for nonlinear Schrödinger equations with singular potentials,, Ann. I. H. Poincar\'e-AN, 26 (2009), 943.
doi: 10.1016/j.anihpc.2008.03.009. |
[10] |
S. Cingolani and M. Lazzo, Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations,, Topol. Methods Nonlinear Anal., 10 (1997), 1.
|
[11] |
G. M. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations,, Commun. Appl. Anal., 7 (2003), 417.
|
[12] |
I. Catto and P. L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. Part 1: A necessary and sufficient condition for the stability of general molecular system,, Comm. Partial Differential Equations, 17 (1992), 1051.
doi: 10.1080/03605309208820878. |
[13] |
T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations,, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893.
doi: 10.1017/S030821050000353X. |
[14] |
I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials,, Advanced Nonlinear Studies, 8 (2008), 573.
|
[15] |
I. Ianni and G. Vaira, Solutions of the Schrödinger-Poisson problem concentrating on spheres, I. Necessary conditions,, Math. Models Methods Appl. Sci., 19 (2009), 707.
doi: 10.1142/S0218202509003589. |
[16] |
I. Ianni and G. Vaira, Solutions of the Schrödinger-Poisson problem concentrating on spheres, II. Existence,, Math. Models Methods Appl. Sci., 19 (2009), 877.
doi: 10.1142/S0218202509003656. |
[17] |
P. L. Lions, The concentration-compactness principle in the calculus of variation. The locally compact case. II,, Ann. Inst. H. Poincare Anal. Non Lin\'eaire, 1 (1984), 223.
|
[18] |
M. Del Pino and P. Felmer, Semiclassical states for nonlinear Schrödinger equations,, J. Funct. Anal., 149 (1997), 245.
|
[19] |
D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term,, Journ. Func. Anal., 237 (2006), 655.
doi: 10.1016/j.jfa.2006.04.005. |
[20] |
D. Ruiz, Semiclassical states for coupled Schrödinger-Maxwell equations: concentration around a sphere,, Math. Models Methods Appl. Sci., 15 (2005), 141.
|
[21] |
O. Sánchez and J. Soler, Long-time dynamics of the Schrödinger-Poisson-Slater system,, J. Statist. Phys., 114 (2004), 179.
doi: 10.1023/B:JOSS.0000003109.97208.53. |
[22] |
M. Yang, Z. Shen and Y. Ding, Multiple semiclassical solutions for the nonlinear Maxwell-Schrödinger system,, Nonlinear Analysis, 71 (2009), 730.
doi: 10.1016/j.na.2008.10.105. |
[23] |
H. Yin and P. Chang, Bound states of nonlinear Schrödinger equations with potentials tending to zero at infinity,, J. Differential Equations, 247 (2009), 618.
doi: 10.1016/j.jde.2009.03.002. |
[24] |
L. Zhao and F. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent,, Nonlinear Analysis, 70 (2009), 2150.
doi: 10.1016/j.na.2008.02.116. |
show all references
References:
[1] |
C. O. Alves and S. H. M. Soares, Existence and concentration of positive solutions for a class of gradient systems,, Nonlinear Differ. Equ. Appl., 12 (2005), 437.
doi: 10.1007/s00030-005-0021-8. |
[2] |
C. O. Alves, G. M. Figueiredo and M. F. Furtado, Multiplicity of solutions for elliptic systems via local mountain pass method,, Comm. Pure. Appl. Anal., 8 (2009), 1745.
doi: 10.3934/cpaa.2009.8.1745. |
[3] |
C. O. Alves and G. M. Figueiredo, On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in $R^N$,, J. Differential Equations, 246 (2009), 1288.
doi: 10.1016/j.jde.2008.08.004. |
[4] |
A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials,, Arch. Ration. Mech. Anal., 159 (2001), 253.
doi: 10.1007/s002050100152. |
[5] |
A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations,, J. Math. Anal. Appl., 345 (2008), 90.
doi: 10.1016/j.jmaa.2008.03.057. |
[6] |
A. Azzollini and A. Pomponio, A note on the ground state solutions for the nonlinear Schrödinger-Maxwell equations,, Boll. Unione Mat. Ital., 9 (2009), 93.
|
[7] |
V. Benci and G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology,, Cal. Var. Partial Differential Equations, 2 (1994), 29.
doi: 10.1007/BF01234314. |
[8] |
R. Benguria and H. Brezis, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules,, Comm. Math. Phys., 79 (1981), 167.
|
[9] |
J. Byeon and Z. Q. Wang, Standing waves for nonlinear Schrödinger equations with singular potentials,, Ann. I. H. Poincar\'e-AN, 26 (2009), 943.
doi: 10.1016/j.anihpc.2008.03.009. |
[10] |
S. Cingolani and M. Lazzo, Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations,, Topol. Methods Nonlinear Anal., 10 (1997), 1.
|
[11] |
G. M. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations,, Commun. Appl. Anal., 7 (2003), 417.
|
[12] |
I. Catto and P. L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. Part 1: A necessary and sufficient condition for the stability of general molecular system,, Comm. Partial Differential Equations, 17 (1992), 1051.
doi: 10.1080/03605309208820878. |
[13] |
T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations,, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893.
doi: 10.1017/S030821050000353X. |
[14] |
I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials,, Advanced Nonlinear Studies, 8 (2008), 573.
|
[15] |
I. Ianni and G. Vaira, Solutions of the Schrödinger-Poisson problem concentrating on spheres, I. Necessary conditions,, Math. Models Methods Appl. Sci., 19 (2009), 707.
doi: 10.1142/S0218202509003589. |
[16] |
I. Ianni and G. Vaira, Solutions of the Schrödinger-Poisson problem concentrating on spheres, II. Existence,, Math. Models Methods Appl. Sci., 19 (2009), 877.
doi: 10.1142/S0218202509003656. |
[17] |
P. L. Lions, The concentration-compactness principle in the calculus of variation. The locally compact case. II,, Ann. Inst. H. Poincare Anal. Non Lin\'eaire, 1 (1984), 223.
|
[18] |
M. Del Pino and P. Felmer, Semiclassical states for nonlinear Schrödinger equations,, J. Funct. Anal., 149 (1997), 245.
|
[19] |
D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term,, Journ. Func. Anal., 237 (2006), 655.
doi: 10.1016/j.jfa.2006.04.005. |
[20] |
D. Ruiz, Semiclassical states for coupled Schrödinger-Maxwell equations: concentration around a sphere,, Math. Models Methods Appl. Sci., 15 (2005), 141.
|
[21] |
O. Sánchez and J. Soler, Long-time dynamics of the Schrödinger-Poisson-Slater system,, J. Statist. Phys., 114 (2004), 179.
doi: 10.1023/B:JOSS.0000003109.97208.53. |
[22] |
M. Yang, Z. Shen and Y. Ding, Multiple semiclassical solutions for the nonlinear Maxwell-Schrödinger system,, Nonlinear Analysis, 71 (2009), 730.
doi: 10.1016/j.na.2008.10.105. |
[23] |
H. Yin and P. Chang, Bound states of nonlinear Schrödinger equations with potentials tending to zero at infinity,, J. Differential Equations, 247 (2009), 618.
doi: 10.1016/j.jde.2009.03.002. |
[24] |
L. Zhao and F. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent,, Nonlinear Analysis, 70 (2009), 2150.
doi: 10.1016/j.na.2008.02.116. |
[1] |
Pingzheng Zhang, Jianhua Sun. Clustered layers for the Schrödinger-Maxwell system on a ball. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 657-688. doi: 10.3934/dcds.2006.16.657 |
[2] |
Giuseppe Maria Coclite, Helge Holden. Ground states of the Schrödinger-Maxwell system with dirac mass: Existence and asymptotics. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 117-132. doi: 10.3934/dcds.2010.27.117 |
[3] |
Fengshuang Gao, Yuxia Guo. Multiple solutions for a nonlinear Schrödinger systems. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1181-1204. doi: 10.3934/cpaa.2020055 |
[4] |
Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104 |
[5] |
Walter Dambrosio, Duccio Papini. Multiple homoclinic solutions for a one-dimensional Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1025-1038. doi: 10.3934/dcdss.2016040 |
[6] |
Renata Bunoiu, Radu Precup, Csaba Varga. Multiple positive standing wave solutions for schrödinger equations with oscillating state-dependent potentials. Communications on Pure & Applied Analysis, 2017, 16 (3) : 953-972. doi: 10.3934/cpaa.2017046 |
[7] |
Gan Lu, Weiming Liu. Multiple complex-valued solutions for the nonlinear Schrödinger equations involving magnetic potentials. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1957-1975. doi: 10.3934/cpaa.2017096 |
[8] |
Miao-Miao Li, Chun-Lei Tang. Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1587-1602. doi: 10.3934/cpaa.2017076 |
[9] |
D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563 |
[10] |
Zaihui Gan, Boling Guo, Jian Zhang. Blowup and global existence of the nonlinear Schrödinger equations with multiple potentials. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1303-1312. doi: 10.3934/cpaa.2009.8.1303 |
[11] |
Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems & Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139 |
[12] |
Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many solutions for a perturbed Schrödinger equation. Conference Publications, 2015, 2015 (special) : 94-102. doi: 10.3934/proc.2015.0094 |
[13] |
Chuangye Liu, Zhi-Qiang Wang. Synchronization of positive solutions for coupled Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2795-2808. doi: 10.3934/dcds.2018118 |
[14] |
Margherita Nolasco. Breathing modes for the Schrödinger-Poisson system with a multiple--well external potential. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1411-1419. doi: 10.3934/cpaa.2010.9.1411 |
[15] |
Silvia Cingolani, Mónica Clapp. Symmetric semiclassical states to a magnetic nonlinear Schrödinger equation via equivariant Morse theory. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1263-1281. doi: 10.3934/cpaa.2010.9.1263 |
[16] |
Toshiyuki Suzuki. Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods. Evolution Equations & Control Theory, 2019, 8 (2) : 447-471. doi: 10.3934/eect.2019022 |
[17] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[18] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[19] |
Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure & Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99 |
[20] |
Veronica Felli, Elsa M. Marchini, Susanna Terracini. On the behavior of solutions to Schrödinger equations with dipole type potentials near the singularity. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 91-119. doi: 10.3934/dcds.2008.21.91 |
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]