July  2011, 10(4): 1307-1314. doi: 10.3934/cpaa.2011.10.1307

Alternative proof for the existence of Green's function

1. 

Department of Mathematics Education, Gwangju National University of Education, 93 Pilmunlo Bugku, Gwangju 500-703, South Korea

Received  November 2009 Revised  September 2010 Published  April 2011

We present a new method for the existence of a Green's function of nod-divergence form parabolic operator with Hölder continuous coefficients. We also derive a Gaussian estimate. Main ideas involve only basic estimates and known results without a potential approach, which is used by E.E. Levi.
Citation: Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307
References:
[1]

A. Ancona, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien,, Ann. Inst. Fourier (Grenoble), 28 (1978), 169.   Google Scholar

[2]

D. Aronson, Non-negative solutions of linear parabolic equations,, Ann. Scuola Norm. Sup. Pisa, 22 (1968), 607.   Google Scholar

[3]

P. Auscher, Regularity theorems and heat kernel for elliptic operators,, J. London Math. Soc., 54 (1996), 284.  doi: 10.1112/jlms/54.2.284.  Google Scholar

[4]

P. Bauman, Equivalence of the Green's functions for diffusion operators in $R^n$: a counterexample,, Proc. Amer. Math. Soc., 91 (1984), 64.  doi: 10.1090/S0002-9939-1984-0735565-4.  Google Scholar

[5]

P. Bauman, Positive solutions of elliptic equations in nondivergence form and their adjoints,, Ark. Mat., 22 (1984), 153.  doi: 10.1007/BF02384378.  Google Scholar

[6]

S. Cho, Two-sided global estimates of the Green's function of parabolic equations,, Potential Analysis, 25 (2006), 387.  doi: doi:10.1007/s11118-006-9026-0.  Google Scholar

[7]

R. Courant and D. Hilbert, "Methods of Mathematical Physics," Vol. II.,, reprint of the 1962 original, (1962).   Google Scholar

[8]

E. B. Davies, "Heat Kernels and Spectral Theory,", Cambridge Univ. Press, (1989).  doi: 10.1017/CBO9780511566158.  Google Scholar

[9]

S. Èĭdel'man, "Parabolicheskie sistemy,", Izdat., (1964).   Google Scholar

[10]

L. Escauriaza, Bounds for the fundamental solution of elliptic and parabolic equations in nondivergence form,, Comm. Partial Differential Equations, 25 (2000), 821.  doi: 10.1080/03605300008821533.  Google Scholar

[11]

E. Fabes, N. Garofalo and S. Salsa, A control on the set where a Green's function vanishes,, Colloq. Math., 60/61 (1990), 637.   Google Scholar

[12]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice Hall, (1964).   Google Scholar

[13]

A. Il'in, A. Kalašnikov and O. Oleĭnik, Second-order linear equations of parabolic type,, Uspehi Mat. Nauk, 17 (1962), 3.  doi: 10.1070/RM1962v017n03ABEH004115.  Google Scholar

[14]

H. Kalf, On E. E. Levi's method of constructing a fundamental solution for second-order elliptic equations,, Rend. Circ. Mat. Palermo, 41 (1992), 251.  doi: 10.1007/BF02844669.  Google Scholar

[15]

O. Ladyzhenskaya, V. Solonnikov and N. Ural'tseva, "Linear and Quasi-linear Equations of Parabolic Type,", Translated from the Russian by S. Smith. Translations of Mathematical Monographs, (1967).   Google Scholar

[16]

E. Levi, Sulle equazioni lineari totalmente ellittiche alle derivate parziali.,, Rend. Circ. Mat. Palermo, 24 (1907), 275.   Google Scholar

[17]

E. Levi, I problemi dei valori al contorno per le equazioni lineari totalmente ellittiche alle derivate parziali.,, Memorie Mat. Fis. Soc. Ital. Scienze (detta dei XL) \textbf{16} (1909) 3-113, 16 (1909), 3.   Google Scholar

[18]

G. Lieberman, "Second Order Parabolic Differential Equations,", World Scientific, (1996).   Google Scholar

[19]

V. Liskevich and Y. Semenov, Estimates for fundamental solutions of second-order parabolic equations,, J. London Math. Soc., 62 (2000), 521.  doi: 10.1112/S0024610700001332.  Google Scholar

[20]

E. Ouhabaz, "Analysis of Heat Equations on Domains,", London Mathematical Society Monographs Series \textbf{31}, 31 (2005).   Google Scholar

[21]

F. Porper and S. Èĭdel'man, Two-sided estimates of the fundamental solutions of second-order parabolic equations and some applications of them,, Uspekhi Math. Nauk, 39 (1984), 107.  doi: 10.1070/RM1984v039n03ABEH003164.  Google Scholar

[22]

L. Saloff-Coste, "Aspects of Sobolev-type Inequalities,", London Mathematical Society Lecture Note Series \textbf{289}, 289 (2002).   Google Scholar

[23]

P. Sjögren, On the adjoint of an elliptic linear differential operator and its potential theory,, Ark. Mat., 11 (1973), 153.  doi: 10.1007/BF02388513.  Google Scholar

[24]

W. Sternberg, Über die lineare elliptische Differentialgleichung zweiter Ordnung mit drei unabhängigen Veränderlichen,, Math. Z., 21 (1924), 286.  doi: 10.1007/BF01187471.  Google Scholar

[25]

Q. Zhang, The boundary behavior of heat kernels of Dirichlet Laplacians,, Journal of Differential Equations, 182 (2002), 416.  doi: 10.1006/jdeq.2001.4112.  Google Scholar

show all references

References:
[1]

A. Ancona, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien,, Ann. Inst. Fourier (Grenoble), 28 (1978), 169.   Google Scholar

[2]

D. Aronson, Non-negative solutions of linear parabolic equations,, Ann. Scuola Norm. Sup. Pisa, 22 (1968), 607.   Google Scholar

[3]

P. Auscher, Regularity theorems and heat kernel for elliptic operators,, J. London Math. Soc., 54 (1996), 284.  doi: 10.1112/jlms/54.2.284.  Google Scholar

[4]

P. Bauman, Equivalence of the Green's functions for diffusion operators in $R^n$: a counterexample,, Proc. Amer. Math. Soc., 91 (1984), 64.  doi: 10.1090/S0002-9939-1984-0735565-4.  Google Scholar

[5]

P. Bauman, Positive solutions of elliptic equations in nondivergence form and their adjoints,, Ark. Mat., 22 (1984), 153.  doi: 10.1007/BF02384378.  Google Scholar

[6]

S. Cho, Two-sided global estimates of the Green's function of parabolic equations,, Potential Analysis, 25 (2006), 387.  doi: doi:10.1007/s11118-006-9026-0.  Google Scholar

[7]

R. Courant and D. Hilbert, "Methods of Mathematical Physics," Vol. II.,, reprint of the 1962 original, (1962).   Google Scholar

[8]

E. B. Davies, "Heat Kernels and Spectral Theory,", Cambridge Univ. Press, (1989).  doi: 10.1017/CBO9780511566158.  Google Scholar

[9]

S. Èĭdel'man, "Parabolicheskie sistemy,", Izdat., (1964).   Google Scholar

[10]

L. Escauriaza, Bounds for the fundamental solution of elliptic and parabolic equations in nondivergence form,, Comm. Partial Differential Equations, 25 (2000), 821.  doi: 10.1080/03605300008821533.  Google Scholar

[11]

E. Fabes, N. Garofalo and S. Salsa, A control on the set where a Green's function vanishes,, Colloq. Math., 60/61 (1990), 637.   Google Scholar

[12]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice Hall, (1964).   Google Scholar

[13]

A. Il'in, A. Kalašnikov and O. Oleĭnik, Second-order linear equations of parabolic type,, Uspehi Mat. Nauk, 17 (1962), 3.  doi: 10.1070/RM1962v017n03ABEH004115.  Google Scholar

[14]

H. Kalf, On E. E. Levi's method of constructing a fundamental solution for second-order elliptic equations,, Rend. Circ. Mat. Palermo, 41 (1992), 251.  doi: 10.1007/BF02844669.  Google Scholar

[15]

O. Ladyzhenskaya, V. Solonnikov and N. Ural'tseva, "Linear and Quasi-linear Equations of Parabolic Type,", Translated from the Russian by S. Smith. Translations of Mathematical Monographs, (1967).   Google Scholar

[16]

E. Levi, Sulle equazioni lineari totalmente ellittiche alle derivate parziali.,, Rend. Circ. Mat. Palermo, 24 (1907), 275.   Google Scholar

[17]

E. Levi, I problemi dei valori al contorno per le equazioni lineari totalmente ellittiche alle derivate parziali.,, Memorie Mat. Fis. Soc. Ital. Scienze (detta dei XL) \textbf{16} (1909) 3-113, 16 (1909), 3.   Google Scholar

[18]

G. Lieberman, "Second Order Parabolic Differential Equations,", World Scientific, (1996).   Google Scholar

[19]

V. Liskevich and Y. Semenov, Estimates for fundamental solutions of second-order parabolic equations,, J. London Math. Soc., 62 (2000), 521.  doi: 10.1112/S0024610700001332.  Google Scholar

[20]

E. Ouhabaz, "Analysis of Heat Equations on Domains,", London Mathematical Society Monographs Series \textbf{31}, 31 (2005).   Google Scholar

[21]

F. Porper and S. Èĭdel'man, Two-sided estimates of the fundamental solutions of second-order parabolic equations and some applications of them,, Uspekhi Math. Nauk, 39 (1984), 107.  doi: 10.1070/RM1984v039n03ABEH003164.  Google Scholar

[22]

L. Saloff-Coste, "Aspects of Sobolev-type Inequalities,", London Mathematical Society Lecture Note Series \textbf{289}, 289 (2002).   Google Scholar

[23]

P. Sjögren, On the adjoint of an elliptic linear differential operator and its potential theory,, Ark. Mat., 11 (1973), 153.  doi: 10.1007/BF02388513.  Google Scholar

[24]

W. Sternberg, Über die lineare elliptische Differentialgleichung zweiter Ordnung mit drei unabhängigen Veränderlichen,, Math. Z., 21 (1924), 286.  doi: 10.1007/BF01187471.  Google Scholar

[25]

Q. Zhang, The boundary behavior of heat kernels of Dirichlet Laplacians,, Journal of Differential Equations, 182 (2002), 416.  doi: 10.1006/jdeq.2001.4112.  Google Scholar

[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[2]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[3]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[4]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[5]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[6]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[7]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[8]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[9]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[10]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[11]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[12]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[13]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[14]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[15]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[16]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[17]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[18]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[19]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[20]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (89)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]