\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Alternative proof for the existence of Green's function

Abstract Related Papers Cited by
  • We present a new method for the existence of a Green's function of nod-divergence form parabolic operator with Hölder continuous coefficients. We also derive a Gaussian estimate. Main ideas involve only basic estimates and known results without a potential approach, which is used by E.E. Levi.
    Mathematics Subject Classification: Primary: 35K10; Secondary: 31B10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ancona, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien, Ann. Inst. Fourier (Grenoble), 28 (1978), 169-213, x. See also for corrections: "Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien'' [Ann. Inst. Fourier (Grenoble) 28 (1978), no. 4, 169-213; [MR 80d:31006], Potential theory, Copenhagen 1979 (Proc. Colloq., Copenhagen, 1979), Lecture Notes in Math., vol. 787, p. 28. (1980) Springer, Berlin.

    [2]

    D. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa, 22 (1968), 607-694.

    [3]

    P. Auscher, Regularity theorems and heat kernel for elliptic operators, J. London Math. Soc., 54 (1996), 284-296.doi: 10.1112/jlms/54.2.284.

    [4]

    P. Bauman, Equivalence of the Green's functions for diffusion operators in $R^n$: a counterexample, Proc. Amer. Math. Soc., 91 (1984), 64-68.doi: 10.1090/S0002-9939-1984-0735565-4.

    [5]

    P. Bauman, Positive solutions of elliptic equations in nondivergence form and their adjoints, Ark. Mat., 22 (1984), 153-173.doi: 10.1007/BF02384378.

    [6]

    S. Cho, Two-sided global estimates of the Green's function of parabolic equations, Potential Analysis, 25 (2006), 387-398.doi: doi:10.1007/s11118-006-9026-0.

    [7]

    R. Courant and D. Hilbert, "Methods of Mathematical Physics," Vol. II., reprint of the 1962 original, John Wiley & Sons Inc., New York, 1989.

    [8]

    E. B. Davies, "Heat Kernels and Spectral Theory," Cambridge Univ. Press, Cambridge, UK 1989.doi: 10.1017/CBO9780511566158.

    [9]

    S. Èĭdel'man, "Parabolicheskie sistemy," Izdat. "Nauka'', Moscow, 1964. Translation: "Parabolic systems," North-Holland Publishing Co., Amsterdam, 1964.

    [10]

    L. Escauriaza, Bounds for the fundamental solution of elliptic and parabolic equations in nondivergence form, Comm. Partial Differential Equations, 25 (2000), 821-845.doi: 10.1080/03605300008821533.

    [11]

    E. Fabes, N. Garofalo and S. Salsa, A control on the set where a Green's function vanishes, Colloq. Math., 60/61 (1990), 637-647.

    [12]

    A. Friedman, "Partial Differential Equations of Parabolic Type," Prentice Hall, 1964.

    [13]

    A. Il'in, A. Kalašnikov and O. Oleĭnik, Second-order linear equations of parabolic type, Uspehi Mat. Nauk, 17 (1962), 3-146.doi: 10.1070/RM1962v017n03ABEH004115.

    [14]

    H. Kalf, On E. E. Levi's method of constructing a fundamental solution for second-order elliptic equations, Rend. Circ. Mat. Palermo, 41 (1992), 251-294.doi: 10.1007/BF02844669.

    [15]

    O. Ladyzhenskaya, V. Solonnikov and N. Ural'tseva, "Linear and Quasi-linear Equations of Parabolic Type," Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1967.

    [16]

    E. Levi, Sulle equazioni lineari totalmente ellittiche alle derivate parziali., Rend. Circ. Mat. Palermo, 24 (1907), 275-317.

    [17]

    E. Levi, I problemi dei valori al contorno per le equazioni lineari totalmente ellittiche alle derivate parziali., Memorie Mat. Fis. Soc. Ital. Scienze (detta dei XL) 16 (1909) 3-113

    [18]

    G. Lieberman, "Second Order Parabolic Differential Equations," World Scientific, 1996.

    [19]

    V. Liskevich and Y. Semenov, Estimates for fundamental solutions of second-order parabolic equations, J. London Math. Soc., 62 (2000), 521-543.doi: 10.1112/S0024610700001332.

    [20]

    E. Ouhabaz, "Analysis of Heat Equations on Domains," London Mathematical Society Monographs Series 31, Princeton University Press, Princeton, NJ, 2005.

    [21]

    F. Porper and S. Èĭdel'man, Two-sided estimates of the fundamental solutions of second-order parabolic equations and some applications of them, Uspekhi Math. Nauk, 39 (1984), 107-156.doi: 10.1070/RM1984v039n03ABEH003164.

    [22]

    L. Saloff-Coste, "Aspects of Sobolev-type Inequalities," London Mathematical Society Lecture Note Series 289, Cambridge University Press, 2002.

    [23]

    P. Sjögren, On the adjoint of an elliptic linear differential operator and its potential theory, Ark. Mat., 11 (1973), 153-165.doi: 10.1007/BF02388513.

    [24]

    W. Sternberg, Über die lineare elliptische Differentialgleichung zweiter Ordnung mit drei unabhängigen Veränderlichen, Math. Z., 21 (1924), 286-311.doi: 10.1007/BF01187471.

    [25]

    Q. Zhang, The boundary behavior of heat kernels of Dirichlet Laplacians, Journal of Differential Equations, 182 (2002), 416-430.doi: 10.1006/jdeq.2001.4112.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(339) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return