September  2011, 10(5): 1315-1329. doi: 10.3934/cpaa.2011.10.1315

$H^{1,p}$-eigenvalues and $L^\infty$-estimates in quasicylindrical domains

1. 

Dipartimento di Matematica e Informatica, Università di Salerno, P. Grahamstown, Fisciano, SA I-84084

Received  March 2009 Revised  November 2009 Published  April 2011

In this paper we consider estimates of the Raleigh quotient and in general of the $H^{1,p}$-eigenvalue in quasicylindrical domains. Then we apply the results to obtain, by variational methods, existence and uniqueness of weak solutions of the Dirichlet problem for second-order elliptic equations in divergent form. For such solutions global boundedness estimates have been also established.
Citation: Antonio Vitolo. $H^{1,p}$-eigenvalues and $L^\infty$-estimates in quasicylindrical domains. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1315-1329. doi: 10.3934/cpaa.2011.10.1315
References:
[1]

R. A. Adams, "Sobolev Spaces,", Pure and Applied Mathematics, (1975).  doi: ISBN:0120441500.  Google Scholar

[2]

H. Brezis, "Analyse fonctionnelle. (French) [Functional analysis] Théorie et applications. [Theory and applications],", Collection Math\'ematiques Appliqu\'ees pour la Ma顃rise. [Collection of Applied Mathematics for the Master's Degree] Masson, (1983).  doi: ISBN:9782225771989.  Google Scholar

[3]

X. Cabré, On the Alexandroff-Bakel'man-Pucci estimate and the reversed Hlder inequality for solutions of elliptic and parabolic equations,, Comm. Pure Appl. Math., 48 (1995), 539.  doi: 10.1002/cpa.3160480504.  Google Scholar

[4]

V. Cafagna and A. Vitolo, On the maximum principle for second-order elliptic operators in unbounded domains,, C. R. Math. Acad. Sci. Paris, 334 (2002), 359.  doi: 10.1016/S1631-073X(02)02267-7.  Google Scholar

[5]

I. Capuzzo Dolcetta and A. Vitolo, On the maximum principle for viscosity solutions of fully nonlinear elliptic equations in general domains,, Matematiche (Catania), 62 (2007), 69.  doi: ISSN 0373-3505; ISSN 2037-5298.  Google Scholar

[6]

I. Ekeland and R. Temam, Translated from the French. Studies in Mathematics and its Applications, Vol. 1., Convex Analysis and Variational Problems, (1976).  doi: ISBN:0898714508.  Google Scholar

[7]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).  doi: ISBN:3540411607.  Google Scholar

[8]

W. K. Hayman, Some bounds for principal frequency,, Appl. Anal., 7 (): 247.  doi: 10.1080/00036817808839195.  Google Scholar

[9]

B. Kawohl and V. Fridman, Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant,, Comment. Math. Univ. Carolinae, 44 (2003), 659.  doi: ISSN:0010-2628.  Google Scholar

[10]

E. H. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains,, Invent. Math., 74 (1983), 441.  doi: 10.1007/BF01394245.  Google Scholar

[11]

V. Maz'ya and M. A. Shubin, Can one see the fundamental frequency of a drum?,, Lett. Math. Phys., 74 (2005), 135.  doi: ISSN:0377-9017.  Google Scholar

[12]

R. Osserman, A note on Hayman's theorem on the bass note of a drum,, Comment. Math. Helv., 52 (1977), 545.  doi: 10.1007/BF02567388.  Google Scholar

[13]

M. Transirico, M. Troisi and A. Vitolo, Spaces of Morrey type and elliptic equations in divergence form on unbounded domains,, Boll. Un. Mat. Ital. B (7), 9 (1995), 153.  doi: ISSN:0392-4041.  Google Scholar

[14]

A. Vitolo, A note on the maximum principle for complete second-order elliptic operators in general domains,, Acta Math. Sin. (Engl. Ser.), 23 (2007), 1955.  doi: 10.1007/s10114-007-0976-y.  Google Scholar

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces,", Pure and Applied Mathematics, (1975).  doi: ISBN:0120441500.  Google Scholar

[2]

H. Brezis, "Analyse fonctionnelle. (French) [Functional analysis] Théorie et applications. [Theory and applications],", Collection Math\'ematiques Appliqu\'ees pour la Ma顃rise. [Collection of Applied Mathematics for the Master's Degree] Masson, (1983).  doi: ISBN:9782225771989.  Google Scholar

[3]

X. Cabré, On the Alexandroff-Bakel'man-Pucci estimate and the reversed Hlder inequality for solutions of elliptic and parabolic equations,, Comm. Pure Appl. Math., 48 (1995), 539.  doi: 10.1002/cpa.3160480504.  Google Scholar

[4]

V. Cafagna and A. Vitolo, On the maximum principle for second-order elliptic operators in unbounded domains,, C. R. Math. Acad. Sci. Paris, 334 (2002), 359.  doi: 10.1016/S1631-073X(02)02267-7.  Google Scholar

[5]

I. Capuzzo Dolcetta and A. Vitolo, On the maximum principle for viscosity solutions of fully nonlinear elliptic equations in general domains,, Matematiche (Catania), 62 (2007), 69.  doi: ISSN 0373-3505; ISSN 2037-5298.  Google Scholar

[6]

I. Ekeland and R. Temam, Translated from the French. Studies in Mathematics and its Applications, Vol. 1., Convex Analysis and Variational Problems, (1976).  doi: ISBN:0898714508.  Google Scholar

[7]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).  doi: ISBN:3540411607.  Google Scholar

[8]

W. K. Hayman, Some bounds for principal frequency,, Appl. Anal., 7 (): 247.  doi: 10.1080/00036817808839195.  Google Scholar

[9]

B. Kawohl and V. Fridman, Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant,, Comment. Math. Univ. Carolinae, 44 (2003), 659.  doi: ISSN:0010-2628.  Google Scholar

[10]

E. H. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains,, Invent. Math., 74 (1983), 441.  doi: 10.1007/BF01394245.  Google Scholar

[11]

V. Maz'ya and M. A. Shubin, Can one see the fundamental frequency of a drum?,, Lett. Math. Phys., 74 (2005), 135.  doi: ISSN:0377-9017.  Google Scholar

[12]

R. Osserman, A note on Hayman's theorem on the bass note of a drum,, Comment. Math. Helv., 52 (1977), 545.  doi: 10.1007/BF02567388.  Google Scholar

[13]

M. Transirico, M. Troisi and A. Vitolo, Spaces of Morrey type and elliptic equations in divergence form on unbounded domains,, Boll. Un. Mat. Ital. B (7), 9 (1995), 153.  doi: ISSN:0392-4041.  Google Scholar

[14]

A. Vitolo, A note on the maximum principle for complete second-order elliptic operators in general domains,, Acta Math. Sin. (Engl. Ser.), 23 (2007), 1955.  doi: 10.1007/s10114-007-0976-y.  Google Scholar

[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[3]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[4]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[5]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[6]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[7]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[8]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[9]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[10]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[11]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[12]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[13]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[14]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[15]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[16]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[19]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[20]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]