Citation: |
[1] |
K. Alligood, T. Sauer and J. Yorke, "Chaos,'' Springer, 1997. |
[2] |
Y. Li, "Chaos in Partial Differential Equations,'' International Press, Somerville, MA, USA, 2004. |
[3] |
Y. Li, et al., Persistent homoclinic orbits for a perturbed nonlinear Schrödinger equation, Comm. Pure Appl. Math., XLIX (1996), 1175-1255.doi: 10.1002/(SICI)1097-0312(199611)49:11<1175::AID-CPA2>3.0.CO;2-9. |
[4] |
Y. Li, Chaos and shadowing lemma for autonomous systems of infinite dimensions, J. Dynam. Diff. Eq., 15 (2003), 699-730.doi: 10.1023/B:JODY.0000010062.09599.d8. |
[5] |
Y. Li, Chaos and shadowing around a homoclinic tube, Abstr. Appl. Anal., 16 (2003), 923-931.doi: 10.1155/S1085337503304038. |
[6] |
Y. Li, Homoclinic tubes and chaos in perturbed sine-Gordon equation, Chaos, Solitons and Fractals, 20 (2004), 791-798.doi: 10.1016/j.chaos.2003.08.013. |
[7] |
Y. Li, Persistent homoclinic orbits for nonlinear Schrödinger equation under singular perturbation, Dynamics of PDE, 1 (2004), 87-123. |
[8] |
Y. Li, Existence of chaos for nonlinear Schrödinger equation under singular perturbation, Dynamics of PDE, 1 (2004), 225-237. |
[9] |
Y. Li, Chaos in Miles' equations, Chaos, Solitons and Fractals, 22 (2004), 965-974.doi: 10.1016/j.chaos.2004.03.018. |
[10] |
Y. Li, Strange tori of the derivative nonlinear Schrödinger equation, Letters in Mathematical Physics, 80 (2007), 83-99.doi: 10.1007/s11005-007-0152-4. |
[11] | |
[12] |
H. Steinlein and H.-O. Walther, Hyperbolic sets, transversal homoclinic trajectories, and symbolic dynamics for $C^1$-maps in Banach spaces, J. Dynam. Diff. Eq., 2 (1990), 325-365.doi: 10.1007/BF01048949. |
[13] |
W. Tucker, A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math., 2 (2002), 53-117. |