\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence of chaos in weakly quasilinear systems

Abstract Related Papers Cited by
  • The aim of this article is twofold: (1). develop a strategy to prove the existence of chaos in weakly quasilinear systems, (2). strengthen the existing results on chaos in partial differential equations. First, we study a sine-Gordon equation containing weakly quasilinear terms, and existence of chaos is proved. Then, we study a Ginzburg-Landau equation containing weakly quasilinear terms, and existence of chaos is proved under generic conditions. Finally, in the Appendix, we prove the existence of chaos in a reaction-diffusion equation.
    Mathematics Subject Classification: Primary 35, 37; Secondary 34, 46.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Alligood, T. Sauer and J. Yorke, "Chaos,'' Springer, 1997.

    [2]

    Y. Li, "Chaos in Partial Differential Equations,'' International Press, Somerville, MA, USA, 2004.

    [3]

    Y. Li, et al., Persistent homoclinic orbits for a perturbed nonlinear Schrödinger equation, Comm. Pure Appl. Math., XLIX (1996), 1175-1255.doi: 10.1002/(SICI)1097-0312(199611)49:11<1175::AID-CPA2>3.0.CO;2-9.

    [4]

    Y. Li, Chaos and shadowing lemma for autonomous systems of infinite dimensions, J. Dynam. Diff. Eq., 15 (2003), 699-730.doi: 10.1023/B:JODY.0000010062.09599.d8.

    [5]

    Y. Li, Chaos and shadowing around a homoclinic tube, Abstr. Appl. Anal., 16 (2003), 923-931.doi: 10.1155/S1085337503304038.

    [6]

    Y. Li, Homoclinic tubes and chaos in perturbed sine-Gordon equation, Chaos, Solitons and Fractals, 20 (2004), 791-798.doi: 10.1016/j.chaos.2003.08.013.

    [7]

    Y. Li, Persistent homoclinic orbits for nonlinear Schrödinger equation under singular perturbation, Dynamics of PDE, 1 (2004), 87-123.

    [8]

    Y. Li, Existence of chaos for nonlinear Schrödinger equation under singular perturbation, Dynamics of PDE, 1 (2004), 225-237.

    [9]

    Y. Li, Chaos in Miles' equations, Chaos, Solitons and Fractals, 22 (2004), 965-974.doi: 10.1016/j.chaos.2004.03.018.

    [10]

    Y. Li, Strange tori of the derivative nonlinear Schrödinger equation, Letters in Mathematical Physics, 80 (2007), 83-99.doi: 10.1007/s11005-007-0152-4.

    [11]

    C. Sparrow, "The Lorenz Equations,'' Springer, 1982.

    [12]

    H. Steinlein and H.-O. Walther, Hyperbolic sets, transversal homoclinic trajectories, and symbolic dynamics for $C^1$-maps in Banach spaces, J. Dynam. Diff. Eq., 2 (1990), 325-365.doi: 10.1007/BF01048949.

    [13]

    W. Tucker, A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math., 2 (2002), 53-117.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(64) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return