September  2011, 10(5): 1345-1360. doi: 10.3934/cpaa.2011.10.1345

Exterior differential systems and prolongations for three important nonlinear partial differential equations

1. 

Department of Mathematics, University of Texas, Edinburg, TX 78539, United States

Received  February 2009 Revised  August 2010 Published  April 2011

Partial differential systems which have applications to water waves will be formulated as exterior differential systems. A prolongation structure is determined for each of the equations. The formalism for studying prolongations is reviewed and the prolongation equations are solved for each equation. One of these differential systems includes the Camassa-Holm and Degasperis-Procesi equations as special cases. The formulation of conservation laws for each of the systems introduced is discussed and a single example for each is given. It is shown how a Bäcklund transformation for the last case can be obtained using the prolongation results.
Citation: Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345
References:
[1]

A. C. Newell, "Solitons in Mathematics and Physics,", SIAM, (1985).   Google Scholar

[2]

M. J. Ablowitz and P. A. Clarkson, "Solitons, Nonlinear Evolution Equations and Inverse Scattering,", Cambridge University Press, (1991).   Google Scholar

[3]

H. D. Wahlquist and F. B. Estabrook, Prolongation structures of nonlinear evolution equations,, J. Math. Phys., 16 (1975), 1.  doi: 10.1063/1.522396.  Google Scholar

[4]

H. D. Wahlquist and F. B. Estabrook, Prolongation Structures of Nonlinear Evolution Equations II,, J. Math. Phys., 17 (1976), 1293.  doi: 10.1063/1.523056.  Google Scholar

[5]

F. B. Estabrook, Moving frames and prolongation algebras,, J. Math. Phys., 23 (1982), 2071.  doi: 10.1-63/1101.525248.  Google Scholar

[6]

E. van Groesen and E. M. de Jager, "Mathematical Structures in Continuous Dynamical Systems,", Studies in Math. Phys., (1994).   Google Scholar

[7]

P. Bracken, The interrelationship of integrable equations, differential geometry and the geometry of their associated surfaces,, in, (2010), 249.   Google Scholar

[8]

E. M. de Jager and S. Spannenburg, Prolongation structures and Bäcklund transformations for the matrix Korteweg-de Vries and Boomeron equation,, J. Phys. A: Math. Gen., 18 (1985), 2177.  doi: 10.1088/0305-4470/18/12/015.  Google Scholar

[9]

P. Bracken, An exterior differential system for a generalized Korteweg-de Vries equation and its associated integrability,, Acta Applicandae Mathematicae, 95 (2007), 223.  doi: 10.1007/s10440-007-9086-1.  Google Scholar

[10]

P. Bracken, Symmetry properties of a generalized Korteweg-de Vries equation and some explicit solutions,, Int. J. Math. and Math. Sciences, 13 (2005), 2159.  doi: 10.1155/IJMMS.2005.2159.  Google Scholar

[11]

P. Olver, "Applications of Lie Groups to Differential Equations,", Springer-Verlag, (1993).   Google Scholar

[12]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Advances in Appl. Mechanics, 31 (1994), 1.  doi: 10.1016/S0065-2156(08)70254-0.  Google Scholar

[13]

E. G. Reyes, Geometric integrability of the Camassa-Holm equation,, Lett. Math. Phys., 59 (2002), 117.  doi: 10.1023/A:1014933316169.  Google Scholar

[14]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Letts., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[15]

J. Lenells, Conservation laws of the Camassa-Holm equation,, J. Phys. A: Math. Gen., 38 (2005), 869.   Google Scholar

[16]

A. Constantin and B. Kolev, Integrability of invariant metrics on the diffeomorphism group of the circle,, J. Nonlin. Sci., 16 (2006), 109.  doi: 10.1007s00332-005-0707-4.  Google Scholar

[17]

A. Hone and J. Wang, Prolongation algebras and Hamiltonian operators for peakon equations,, Inverse Problems, 19 (2003), 129.  doi: 10.1088/0266-5611/19/1/307.  Google Scholar

[18]

M. Fisher and J. Schiff, The Camassa-Holm equation: conserved quantities and the initial value problem,, Phys. Lett., A 259 (1999), 371.  doi: 10.1016/S0375-9601(99)00466-1.  Google Scholar

[19]

F. B. Estabrook and H. D. Wahlquist, Prolongation structures, connection theory and Bäcklund transformation,, in, (1978).   Google Scholar

show all references

References:
[1]

A. C. Newell, "Solitons in Mathematics and Physics,", SIAM, (1985).   Google Scholar

[2]

M. J. Ablowitz and P. A. Clarkson, "Solitons, Nonlinear Evolution Equations and Inverse Scattering,", Cambridge University Press, (1991).   Google Scholar

[3]

H. D. Wahlquist and F. B. Estabrook, Prolongation structures of nonlinear evolution equations,, J. Math. Phys., 16 (1975), 1.  doi: 10.1063/1.522396.  Google Scholar

[4]

H. D. Wahlquist and F. B. Estabrook, Prolongation Structures of Nonlinear Evolution Equations II,, J. Math. Phys., 17 (1976), 1293.  doi: 10.1063/1.523056.  Google Scholar

[5]

F. B. Estabrook, Moving frames and prolongation algebras,, J. Math. Phys., 23 (1982), 2071.  doi: 10.1-63/1101.525248.  Google Scholar

[6]

E. van Groesen and E. M. de Jager, "Mathematical Structures in Continuous Dynamical Systems,", Studies in Math. Phys., (1994).   Google Scholar

[7]

P. Bracken, The interrelationship of integrable equations, differential geometry and the geometry of their associated surfaces,, in, (2010), 249.   Google Scholar

[8]

E. M. de Jager and S. Spannenburg, Prolongation structures and Bäcklund transformations for the matrix Korteweg-de Vries and Boomeron equation,, J. Phys. A: Math. Gen., 18 (1985), 2177.  doi: 10.1088/0305-4470/18/12/015.  Google Scholar

[9]

P. Bracken, An exterior differential system for a generalized Korteweg-de Vries equation and its associated integrability,, Acta Applicandae Mathematicae, 95 (2007), 223.  doi: 10.1007/s10440-007-9086-1.  Google Scholar

[10]

P. Bracken, Symmetry properties of a generalized Korteweg-de Vries equation and some explicit solutions,, Int. J. Math. and Math. Sciences, 13 (2005), 2159.  doi: 10.1155/IJMMS.2005.2159.  Google Scholar

[11]

P. Olver, "Applications of Lie Groups to Differential Equations,", Springer-Verlag, (1993).   Google Scholar

[12]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Advances in Appl. Mechanics, 31 (1994), 1.  doi: 10.1016/S0065-2156(08)70254-0.  Google Scholar

[13]

E. G. Reyes, Geometric integrability of the Camassa-Holm equation,, Lett. Math. Phys., 59 (2002), 117.  doi: 10.1023/A:1014933316169.  Google Scholar

[14]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Letts., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[15]

J. Lenells, Conservation laws of the Camassa-Holm equation,, J. Phys. A: Math. Gen., 38 (2005), 869.   Google Scholar

[16]

A. Constantin and B. Kolev, Integrability of invariant metrics on the diffeomorphism group of the circle,, J. Nonlin. Sci., 16 (2006), 109.  doi: 10.1007s00332-005-0707-4.  Google Scholar

[17]

A. Hone and J. Wang, Prolongation algebras and Hamiltonian operators for peakon equations,, Inverse Problems, 19 (2003), 129.  doi: 10.1088/0266-5611/19/1/307.  Google Scholar

[18]

M. Fisher and J. Schiff, The Camassa-Holm equation: conserved quantities and the initial value problem,, Phys. Lett., A 259 (1999), 371.  doi: 10.1016/S0375-9601(99)00466-1.  Google Scholar

[19]

F. B. Estabrook and H. D. Wahlquist, Prolongation structures, connection theory and Bäcklund transformation,, in, (1978).   Google Scholar

[1]

Hongxia Zhang, Ying Wang. Liouville results for fully nonlinear integral elliptic equations in exterior domains. Communications on Pure & Applied Analysis, 2018, 17 (1) : 85-112. doi: 10.3934/cpaa.2018006

[2]

Santiago Capriotti. Dirac constraints in field theory and exterior differential systems. Journal of Geometric Mechanics, 2010, 2 (1) : 1-50. doi: 10.3934/jgm.2010.2.1

[3]

Marta Strani. Existence and uniqueness of a positive connection for the scalar viscous shallow water system in a bounded interval. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1653-1667. doi: 10.3934/cpaa.2014.13.1653

[4]

Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4455-4475. doi: 10.3934/dcds.2015.35.4455

[5]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

[6]

Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925

[7]

Wenxiong Chen, Congming Li. Regularity of solutions for a system of integral equations. Communications on Pure & Applied Analysis, 2005, 4 (1) : 1-8. doi: 10.3934/cpaa.2005.4.1

[8]

Yingshu Lü, Chunqin Zhou. Symmetry for an integral system with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1533-1543. doi: 10.3934/dcds.2018121

[9]

Xiaotao Huang, Lihe Wang. Radial symmetry results for Bessel potential integral equations in exterior domains and in annular domains. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1121-1134. doi: 10.3934/cpaa.2017054

[10]

Farid Tari. Geometric properties of the integral curves of an implicit differential equation. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 349-364. doi: 10.3934/dcds.2007.17.349

[11]

Nguyen Dinh Cong, Doan Thai Son. On integral separation of bounded linear random differential equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 995-1007. doi: 10.3934/dcdss.2016038

[12]

Laurent Bourgeois, Jérémi Dardé. The "exterior approach" to solve the inverse obstacle problem for the Stokes system. Inverse Problems & Imaging, 2014, 8 (1) : 23-51. doi: 10.3934/ipi.2014.8.23

[13]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 579-596. doi: 10.3934/dcds.2006.15.579

[14]

Pierluigi Benevieri, Alessandro Calamai, Massimo Furi, Maria Patrizia Pera. On general properties of retarded functional differential equations on manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 27-46. doi: 10.3934/dcds.2013.33.27

[15]

C. M. Groothedde, J. D. Mireles James. Parameterization method for unstable manifolds of delay differential equations. Journal of Computational Dynamics, 2017, 4 (1&2) : 21-70. doi: 10.3934/jcd.2017002

[16]

Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155

[17]

Yingshu Lü. Symmetry and non-existence of solutions to an integral system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 807-821. doi: 10.3934/cpaa.2018041

[18]

Wenxiong Chen, Congming Li. An integral system and the Lane-Emden conjecture. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1167-1184. doi: 10.3934/dcds.2009.24.1167

[19]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[20]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]