[1]

M. J. Ablowitz and H. Segur, "Solitons and the Inverse Scattering Transform," SIAM, Philadelphia, 1981.

[2]

J. A. Almendral and M. A. F. Sanjuán, Integrability and symmetries for the Helmholtz oscillator with friction, J. Phys. A (Math. Gen.), 36 (2003), 695710.

[3]

A. Canada, P. Drabek and A. Fonda, "Handbook of Differential Equations: Ordinary Differential Equations," Volumes 23, Elsevier, 2005.

[4]

V. K. Chandrasekar, M. Senthilvelan and M. Lakshmanan, On the complete integrability and linearization of certain secondorder nonlinear ordinary differential equations, Proc. R. Soc. Lond. Ser. A, 461 (2005), 24512476.

[5]

L. G. S. Duarte, S. E. S. Duarte, A. C. P. da Mota and J. E. F. Skea, Solving the secondorder ordinary differential equations by extending the PrelleSinger method, J. Phys. A (Math. Gen.), 34 (2001), 30153024.

[6]

G. Duffing, "Erzwungene Schwingungen bei Veränderlicher Eigenfrequenz," F. Vieweg u. Sohn, Braunschweig, 1918.

[7]

Z. Feng, On traveling wave solutions of the BurgersKortewegde Vries equation, Nonlinearity, 20 (2007), 343356.

[8]

Z. Feng, The firstintegral method to the BurgersKortewegde Vries equation, J. Phys. A (Math. Gen.), 35 (2002), 343350.

[9]

Z. Feng, G. Chen and S. B. Hsu, A qualitative study of the damped Duffing equation and applications, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 10971112.

[10]

Z. Feng and Q. G. Meng, Exact solution for a twodimensional KdVBurgerstype equation with nonlinear terms of any order, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 285291.

[11]

Z. Feng and Q. G. Meng, First integrals for the damped Helmholtz oscillator, Int. J. Comput. Math. 87 (2010), 27982810.

[12]

Z. Feng, S. Zheng and D. Y. Gao, Traveling wave solutions to a reactiondiffusion equation, Z. angew. Math. Phys., 60 (2009), 756773.

[13]

G. Gao and Z. Feng, First integrals for the Duffngvan der Poltype oscillator, E. J. Diff. Equs., 2010 (2010), 112.

[14]

M. Gitterman, "The Noisy Oscillator: the First Hundred Years, from Einstein until Now," World Scientific Publishing, Singapore, 2005.

[15]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields," SpringerVerlag, New York, 1983.

[16]

P. Holmes and D. Rand, Phase portraits and bifurcations of the nonlinear oscillator: $\ddotx +(\alpha +\gamma x^2) \dotx + \beta x + \delta x^3=0$, Int. J. NonLinear Mech., 15 (1980), 449458.

[17]

P. E. Hydon, "Symmetry Methods for Differential Equations," Cambridge University Press, New York, 2000.

[18]

E. I. Ince, "Ordinary Differential Equations," Dover, New York, 1956.

[19]

D. W. Jordan and P. Smith, "Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers," Oxford University Press, New York, 2007.

[20]

M. Lakshmanan and S. Rajasekar, "Nonlinear Dynamics: Integrability, Chaos and Patterns," Springer Verlag, New York, 2003.

[21]

P. J. Olver, "Applications of Lie Groups to Differential Equations," Springer Verlag, New York, 1993.

[22]

M. Prelle and M. Singer, Elementary first integrals of differential equations, Trans. Am. Math. Soc., 279 (1983), 215229.

[23]

A. D. Polyanin and V. F. Zaitsev, "Handbook of Exact Solutions for Ordinary Differential Equations," 2nd edition, London: CRC Press, 2003.

[24]

A. D. Polyanin, V. F. Zaitsev and A. Moussiaux, "Handbook of First Order Partial Differential Equations," Taylor & Francis, London, 2002.

[25]

S. N. Rasband, Marginal stability boundaries for some driven, damped, nonlinear oscillators, Int. J. NonLinear Mech., 22 (1987), 477495.

[26]

M. Senthil Velan and M. Lakshmanan, Lie symmetries and infinitedimensional Lie algebras of certain nonlinear dissipative systems, J. Phys. A (Math. Gen.), 28 (1995), 19291942.

[27]

B. van der Pol, A theory of the amplitude of free and forced triode vibrations, Radio Review, 1 (1920), 701710, 754762.

[28]

B. van der Pol and J. van der Mark, Frequency demultiplication, Nature, 120 (1927), 363364.

[29]

V. F. Zaitsev and A. D. Polyanin, "Handbook of Ordinary Differential Equations," Fizmatlit, Moscow, 2001 (in Russian).
