
Previous Article
Periodic solutions for $p$Laplacian systems of Liénardtype
 CPAA Home
 This Issue

Next Article
Stability of linear differential equations with a distributed delay
Duffingvan der Poltype oscillator system and its first integrals
1.  Department of Mathematics, University of TexasPan American, Edinburg, TX 78539 
2.  Department of Mathematics, University of Texas{Pan American, Edinburg, Texas 78539, United States, United States 
References:
show all references
References:
[1] 
Stefan Siegmund. Normal form of Duffingvan der Pol oscillator under nonautonomous parametric perturbations. Conference Publications, 2001, 2001 (Special) : 357361. doi: 10.3934/proc.2001.2001.357 
[2] 
Zhaosheng Feng. Duffingvan der Poltype oscillator systems. Discrete and Continuous Dynamical Systems  S, 2014, 7 (6) : 12311257. doi: 10.3934/dcdss.2014.7.1231 
[3] 
Zhaoxia Wang, Hebai Chen. A nonsmooth van der PolDuffing oscillator (I): The sum of indices of equilibria is $ 1 $. Discrete and Continuous Dynamical Systems  B, 2022, 27 (3) : 14211446. doi: 10.3934/dcdsb.2021096 
[4] 
Zhaoxia Wang, Hebai Chen. A nonsmooth van der PolDuffing oscillator (II): The sum of indices of equilibria is $ 1 $. Discrete and Continuous Dynamical Systems  B, 2022, 27 (3) : 15491589. doi: 10.3934/dcdsb.2021101 
[5] 
Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure and Applied Analysis, 2014, 13 (1) : 453481. doi: 10.3934/cpaa.2014.13.453 
[6] 
Xiaoqin P. Wu, Liancheng Wang. Hopf bifurcation of a class of two coupled relaxation oscillators of the van der Pol type with delay. Discrete and Continuous Dynamical Systems  B, 2010, 13 (2) : 503516. doi: 10.3934/dcdsb.2010.13.503 
[7] 
Michele Zadra, Elizabeth L. Mansfield. Using Lie group integrators to solve two and higher dimensional variational problems with symmetry. Journal of Computational Dynamics, 2019, 6 (2) : 485511. doi: 10.3934/jcd.2019025 
[8] 
Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure and Applied Analysis, 2009, 8 (6) : 19251932. doi: 10.3934/cpaa.2009.8.1925 
[9] 
Yingshu Lü, Chunqin Zhou. Symmetry for an integral system with general nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 15331543. doi: 10.3934/dcds.2018121 
[10] 
Dmitry Treschev. Oscillator and thermostat. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 16931712. doi: 10.3934/dcds.2010.28.1693 
[11] 
Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 977990. doi: 10.3934/dcds.2014.34.977 
[12] 
Yingshu Lü. Symmetry and nonexistence of solutions to an integral system. Communications on Pure and Applied Analysis, 2018, 17 (3) : 807821. doi: 10.3934/cpaa.2018041 
[13] 
Zhenjie Li, Chunqin Zhou. Radial symmetry of nonnegative solutions for nonlinear integral systems. Communications on Pure and Applied Analysis, 2022, 21 (3) : 837844. doi: 10.3934/cpaa.2021201 
[14] 
Annalisa Cesaroni, Matteo Novaga, Enrico Valdinoci. A symmetry result for the OrnsteinUhlenbeck operator. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 24512467. doi: 10.3934/dcds.2014.34.2451 
[15] 
Boris Anicet Guimfack, Conrad Bertrand Tabi, Alidou Mohamadou, Timoléon Crépin Kofané. Stochastic dynamics of the FitzHughNagumo neuron model through a modified Van der Pol equation with fractionalorder term and Gaussian white noise excitation. Discrete and Continuous Dynamical Systems  S, 2021, 14 (7) : 22292243. doi: 10.3934/dcdss.2020397 
[16] 
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete and Continuous Dynamical Systems  B, 2021, 26 (3) : 15651577. doi: 10.3934/dcdsb.2020173 
[17] 
Wenxiong Chen, Congming Li. Radial symmetry of solutions for some integral systems of Wolff type. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 10831093. doi: 10.3934/dcds.2011.30.1083 
[18] 
Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure and Applied Analysis, 2006, 5 (3) : 515528. doi: 10.3934/cpaa.2006.5.515 
[19] 
Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure and Applied Analysis, 2007, 6 (1) : 6982. doi: 10.3934/cpaa.2007.6.69 
[20] 
Enrico Bernardi, Alberto Lanconelli. Stochastic perturbation of a cubic anharmonic oscillator. Discrete and Continuous Dynamical Systems  B, 2022, 27 (5) : 25632585. doi: 10.3934/dcdsb.2021148 
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]