September  2011, 10(5): 1393-1400. doi: 10.3934/cpaa.2011.10.1393

Periodic solutions for $p$-Laplacian systems of Liénard-type

1. 

Department of Mathematics, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China

2. 

Department of Mathematics, University of Texas-Pan American, Edinburg, TX 78539

Received  February 2009 Revised  July 2010 Published  April 2011

In this paper, we study the existence of periodic solutions for $n-$dimensional $p$-Laplacian systems by means of the topological degree theory. Sufficient conditions of the existence of periodic solutions for $n-$dimensional $p$-Laplacian systems of Liénard-type are presented.
Citation: Wenbin Liu, Zhaosheng Feng. Periodic solutions for $p$-Laplacian systems of Liénard-type. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1393-1400. doi: 10.3934/cpaa.2011.10.1393
References:
[1]

L. S. Leibenson, General problem of the movement of a compressible fluid in a porous medium,, Izv. Akad. Nauk SSSR, (1983), 7.   Google Scholar

[2]

L. E. Bobisud, Steady state turbulent flow with reaction,, Rochy Mountain J. Math., 21 (1991), 993.   Google Scholar

[3]

J. D. Murray, "Mathematical Biology,", Springer-Verlag, (1993).   Google Scholar

[4]

M. A. Herrero and J. L. Vazquz, On the propagation properties of a nonlinear degenerate parabolic equation,, Commun. Partial Diff. Equs., 7 (1982), 1381.   Google Scholar

[5]

L. Boccardo, P. Drábek, D. Giachetti and M. Kučera, Generalization of Fredholm alternative for nonlinear differential operators,, Nonlin. Anal., 10 (1986), 1083.   Google Scholar

[6]

C. Coster, On pairs of positive solutions for the one-dimensional p-Laplacian,, Nonlin. Anal., 23 (1994), 669.   Google Scholar

[7]

M. Del Pino, M. Elgueta and R. Manásevich, A homotopic deformation along p of a Leray-Schauder degree result and existence for $(|u'|^{p-2}u')'+f(t,u)=0, u(0)=u(T)=0, p>1$,, J. Diff. Equs., 80 (1989), 1.   Google Scholar

[8]

R. Manásevich and F. Zanolin, Time-mappings and multiplicity of solutions for the one-dimensional p-Laplacian,, Nonlin. Anal., 21 (1993), 269.   Google Scholar

[9]

M. Zhang, Nonuniform nonresonance at the first eigenvalue of the p-Laplacian,, Nonlin. Anal., 29 (1997), 41.   Google Scholar

[10]

M. Del Pino, R. Manásevich and A. Murua, Existence and multiplicity of solutions with prescribed period for a second order quasilinear o.d.e.,, Nonlin. Anal., 18 (1992), 79.   Google Scholar

[11]

M. Zhang, The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials,, J. London Math. Soc., 64 (2001), 125.   Google Scholar

[12]

P. Amster and P. De Nápoli, Landesman-Lazer type conditions for a system of p-Laplacian like operators,, J. Math. Anal. Appl., 326 (2007), 1236.   Google Scholar

[13]

M. Carcía-huidobro, C. P. Gupta and R. Manásevich, Solvability for a nonlinear three-point boundary value problem with p-Laplac-like operator at resonance,, Abstr. Appl. Anal., 16 (2001), 191.   Google Scholar

[14]

R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with $p-$Laplacian-like operators,, J. Diff. Equs., (1998), 367.   Google Scholar

[15]

H. Liu and Z. Feng, Begehr-Hile operator and its applications to some differential equations,, Commun. Pure Appl. Anal., 9 (2010), 387.   Google Scholar

[16]

S. B. Li, Y. H. Su and Z. Feng, Positive solutions to $p$-Laplacian multi-point BVPs on time scales,, Dyn. Partial Differ. Equ., 7 (2010), 45.   Google Scholar

show all references

References:
[1]

L. S. Leibenson, General problem of the movement of a compressible fluid in a porous medium,, Izv. Akad. Nauk SSSR, (1983), 7.   Google Scholar

[2]

L. E. Bobisud, Steady state turbulent flow with reaction,, Rochy Mountain J. Math., 21 (1991), 993.   Google Scholar

[3]

J. D. Murray, "Mathematical Biology,", Springer-Verlag, (1993).   Google Scholar

[4]

M. A. Herrero and J. L. Vazquz, On the propagation properties of a nonlinear degenerate parabolic equation,, Commun. Partial Diff. Equs., 7 (1982), 1381.   Google Scholar

[5]

L. Boccardo, P. Drábek, D. Giachetti and M. Kučera, Generalization of Fredholm alternative for nonlinear differential operators,, Nonlin. Anal., 10 (1986), 1083.   Google Scholar

[6]

C. Coster, On pairs of positive solutions for the one-dimensional p-Laplacian,, Nonlin. Anal., 23 (1994), 669.   Google Scholar

[7]

M. Del Pino, M. Elgueta and R. Manásevich, A homotopic deformation along p of a Leray-Schauder degree result and existence for $(|u'|^{p-2}u')'+f(t,u)=0, u(0)=u(T)=0, p>1$,, J. Diff. Equs., 80 (1989), 1.   Google Scholar

[8]

R. Manásevich and F. Zanolin, Time-mappings and multiplicity of solutions for the one-dimensional p-Laplacian,, Nonlin. Anal., 21 (1993), 269.   Google Scholar

[9]

M. Zhang, Nonuniform nonresonance at the first eigenvalue of the p-Laplacian,, Nonlin. Anal., 29 (1997), 41.   Google Scholar

[10]

M. Del Pino, R. Manásevich and A. Murua, Existence and multiplicity of solutions with prescribed period for a second order quasilinear o.d.e.,, Nonlin. Anal., 18 (1992), 79.   Google Scholar

[11]

M. Zhang, The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials,, J. London Math. Soc., 64 (2001), 125.   Google Scholar

[12]

P. Amster and P. De Nápoli, Landesman-Lazer type conditions for a system of p-Laplacian like operators,, J. Math. Anal. Appl., 326 (2007), 1236.   Google Scholar

[13]

M. Carcía-huidobro, C. P. Gupta and R. Manásevich, Solvability for a nonlinear three-point boundary value problem with p-Laplac-like operator at resonance,, Abstr. Appl. Anal., 16 (2001), 191.   Google Scholar

[14]

R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with $p-$Laplacian-like operators,, J. Diff. Equs., (1998), 367.   Google Scholar

[15]

H. Liu and Z. Feng, Begehr-Hile operator and its applications to some differential equations,, Commun. Pure Appl. Anal., 9 (2010), 387.   Google Scholar

[16]

S. B. Li, Y. H. Su and Z. Feng, Positive solutions to $p$-Laplacian multi-point BVPs on time scales,, Dyn. Partial Differ. Equ., 7 (2010), 45.   Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[3]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[4]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[5]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[6]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[7]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[8]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[9]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[10]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[11]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[12]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[13]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[14]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[15]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[16]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[17]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[18]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[19]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[20]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (97)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]