September  2011, 10(5): 1393-1400. doi: 10.3934/cpaa.2011.10.1393

Periodic solutions for $p$-Laplacian systems of Liénard-type

1. 

Department of Mathematics, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China

2. 

Department of Mathematics, University of Texas-Pan American, Edinburg, TX 78539

Received  February 2009 Revised  July 2010 Published  April 2011

In this paper, we study the existence of periodic solutions for $n-$dimensional $p$-Laplacian systems by means of the topological degree theory. Sufficient conditions of the existence of periodic solutions for $n-$dimensional $p$-Laplacian systems of Liénard-type are presented.
Citation: Wenbin Liu, Zhaosheng Feng. Periodic solutions for $p$-Laplacian systems of Liénard-type. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1393-1400. doi: 10.3934/cpaa.2011.10.1393
References:
[1]

L. S. Leibenson, General problem of the movement of a compressible fluid in a porous medium,, Izv. Akad. Nauk SSSR, (1983), 7.   Google Scholar

[2]

L. E. Bobisud, Steady state turbulent flow with reaction,, Rochy Mountain J. Math., 21 (1991), 993.   Google Scholar

[3]

J. D. Murray, "Mathematical Biology,", Springer-Verlag, (1993).   Google Scholar

[4]

M. A. Herrero and J. L. Vazquz, On the propagation properties of a nonlinear degenerate parabolic equation,, Commun. Partial Diff. Equs., 7 (1982), 1381.   Google Scholar

[5]

L. Boccardo, P. Drábek, D. Giachetti and M. Kučera, Generalization of Fredholm alternative for nonlinear differential operators,, Nonlin. Anal., 10 (1986), 1083.   Google Scholar

[6]

C. Coster, On pairs of positive solutions for the one-dimensional p-Laplacian,, Nonlin. Anal., 23 (1994), 669.   Google Scholar

[7]

M. Del Pino, M. Elgueta and R. Manásevich, A homotopic deformation along p of a Leray-Schauder degree result and existence for $(|u'|^{p-2}u')'+f(t,u)=0, u(0)=u(T)=0, p>1$,, J. Diff. Equs., 80 (1989), 1.   Google Scholar

[8]

R. Manásevich and F. Zanolin, Time-mappings and multiplicity of solutions for the one-dimensional p-Laplacian,, Nonlin. Anal., 21 (1993), 269.   Google Scholar

[9]

M. Zhang, Nonuniform nonresonance at the first eigenvalue of the p-Laplacian,, Nonlin. Anal., 29 (1997), 41.   Google Scholar

[10]

M. Del Pino, R. Manásevich and A. Murua, Existence and multiplicity of solutions with prescribed period for a second order quasilinear o.d.e.,, Nonlin. Anal., 18 (1992), 79.   Google Scholar

[11]

M. Zhang, The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials,, J. London Math. Soc., 64 (2001), 125.   Google Scholar

[12]

P. Amster and P. De Nápoli, Landesman-Lazer type conditions for a system of p-Laplacian like operators,, J. Math. Anal. Appl., 326 (2007), 1236.   Google Scholar

[13]

M. Carcía-huidobro, C. P. Gupta and R. Manásevich, Solvability for a nonlinear three-point boundary value problem with p-Laplac-like operator at resonance,, Abstr. Appl. Anal., 16 (2001), 191.   Google Scholar

[14]

R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with $p-$Laplacian-like operators,, J. Diff. Equs., (1998), 367.   Google Scholar

[15]

H. Liu and Z. Feng, Begehr-Hile operator and its applications to some differential equations,, Commun. Pure Appl. Anal., 9 (2010), 387.   Google Scholar

[16]

S. B. Li, Y. H. Su and Z. Feng, Positive solutions to $p$-Laplacian multi-point BVPs on time scales,, Dyn. Partial Differ. Equ., 7 (2010), 45.   Google Scholar

show all references

References:
[1]

L. S. Leibenson, General problem of the movement of a compressible fluid in a porous medium,, Izv. Akad. Nauk SSSR, (1983), 7.   Google Scholar

[2]

L. E. Bobisud, Steady state turbulent flow with reaction,, Rochy Mountain J. Math., 21 (1991), 993.   Google Scholar

[3]

J. D. Murray, "Mathematical Biology,", Springer-Verlag, (1993).   Google Scholar

[4]

M. A. Herrero and J. L. Vazquz, On the propagation properties of a nonlinear degenerate parabolic equation,, Commun. Partial Diff. Equs., 7 (1982), 1381.   Google Scholar

[5]

L. Boccardo, P. Drábek, D. Giachetti and M. Kučera, Generalization of Fredholm alternative for nonlinear differential operators,, Nonlin. Anal., 10 (1986), 1083.   Google Scholar

[6]

C. Coster, On pairs of positive solutions for the one-dimensional p-Laplacian,, Nonlin. Anal., 23 (1994), 669.   Google Scholar

[7]

M. Del Pino, M. Elgueta and R. Manásevich, A homotopic deformation along p of a Leray-Schauder degree result and existence for $(|u'|^{p-2}u')'+f(t,u)=0, u(0)=u(T)=0, p>1$,, J. Diff. Equs., 80 (1989), 1.   Google Scholar

[8]

R. Manásevich and F. Zanolin, Time-mappings and multiplicity of solutions for the one-dimensional p-Laplacian,, Nonlin. Anal., 21 (1993), 269.   Google Scholar

[9]

M. Zhang, Nonuniform nonresonance at the first eigenvalue of the p-Laplacian,, Nonlin. Anal., 29 (1997), 41.   Google Scholar

[10]

M. Del Pino, R. Manásevich and A. Murua, Existence and multiplicity of solutions with prescribed period for a second order quasilinear o.d.e.,, Nonlin. Anal., 18 (1992), 79.   Google Scholar

[11]

M. Zhang, The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials,, J. London Math. Soc., 64 (2001), 125.   Google Scholar

[12]

P. Amster and P. De Nápoli, Landesman-Lazer type conditions for a system of p-Laplacian like operators,, J. Math. Anal. Appl., 326 (2007), 1236.   Google Scholar

[13]

M. Carcía-huidobro, C. P. Gupta and R. Manásevich, Solvability for a nonlinear three-point boundary value problem with p-Laplac-like operator at resonance,, Abstr. Appl. Anal., 16 (2001), 191.   Google Scholar

[14]

R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with $p-$Laplacian-like operators,, J. Diff. Equs., (1998), 367.   Google Scholar

[15]

H. Liu and Z. Feng, Begehr-Hile operator and its applications to some differential equations,, Commun. Pure Appl. Anal., 9 (2010), 387.   Google Scholar

[16]

S. B. Li, Y. H. Su and Z. Feng, Positive solutions to $p$-Laplacian multi-point BVPs on time scales,, Dyn. Partial Differ. Equ., 7 (2010), 45.   Google Scholar

[1]

Jitsuro Sugie, Tadayuki Hara. Existence and non-existence of homoclinic trajectories of the Liénard system. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 237-254. doi: 10.3934/dcds.1996.2.237

[2]

Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047

[3]

Tomás Caraballo, David Cheban. Almost periodic and asymptotically almost periodic solutions of Liénard equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 703-717. doi: 10.3934/dcdsb.2011.16.703

[4]

Tiantian Ma, Zaihong Wang. Periodic solutions of Liénard equations with resonant isochronous potentials. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1563-1581. doi: 10.3934/dcds.2013.33.1563

[5]

Min Hu, Tao Li, Xingwu Chen. Bi-center problem and Hopf cyclicity of a Cubic Liénard system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 401-414. doi: 10.3934/dcdsb.2019187

[6]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[7]

Yuxiang Zhang, Shiwang Ma. Some existence results on periodic and subharmonic solutions of ordinary $P$-Laplacian systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 251-260. doi: 10.3934/dcdsb.2009.12.251

[8]

Mats Gyllenberg, Yan Ping. The generalized Liénard systems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 1043-1057. doi: 10.3934/dcds.2002.8.1043

[9]

Michael Filippakis, Alexandru Kristály, Nikolaos S. Papageorgiou. Existence of five nonzero solutions with exact sign for a $p$-Laplacian equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 405-440. doi: 10.3934/dcds.2009.24.405

[10]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[11]

Jian Lu, Huaiyu Jian. Topological degree method for the rotationally symmetric $L_p$-Minkowski problem. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 971-980. doi: 10.3934/dcds.2016.36.971

[12]

Na Li, Maoan Han, Valery G. Romanovski. Cyclicity of some Liénard Systems. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2127-2150. doi: 10.3934/cpaa.2015.14.2127

[13]

A. Ghose Choudhury, Partha Guha. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2465-2478. doi: 10.3934/dcdsb.2017126

[14]

Magdalena Nockowska-Rosiak, Piotr Hachuła, Ewa Schmeidel. Existence of uncountably many asymptotically constant solutions to discrete nonlinear three-dimensional system with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 369-375. doi: 10.3934/dcdsb.2018025

[15]

Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, 2005, 2005 (Special) : 587-596. doi: 10.3934/proc.2005.2005.587

[16]

Jaume Llibre, Claudia Valls. On the analytic integrability of the Liénard analytic differential systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 557-573. doi: 10.3934/dcdsb.2016.21.557

[17]

Bin Liu. Quasiperiodic solutions of semilinear Liénard equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 137-160. doi: 10.3934/dcds.2005.12.137

[18]

Robert Roussarie. Putting a boundary to the space of Liénard equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 441-448. doi: 10.3934/dcds.2007.17.441

[19]

Linfang Liu, Xianlong Fu. Existence and upper semicontinuity of (L2, Lq) pullback attractors for a stochastic p-laplacian equation. Communications on Pure & Applied Analysis, 2017, 6 (2) : 443-474. doi: 10.3934/cpaa.2017023

[20]

Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]