Citation: |
[1] |
H. Amann, Saddle points and multiple solutions of differential equations, Math. Z., 169 (1979), 127-166.doi: 10.1007/BF01215273. |
[2] |
G. Barletta and R. Livrea, Existence of three periodic solutions for a nonautonomous second order system, Le Mathematiche, 57 (2002), 205-215. |
[3] |
G. Barletta and N. S. Papageorgiou, Nonautonomous second order periodic systems: existence and multiplicity of solutions, J. Nonlinear Convex Anal., 8 (2007), 373-390. |
[4] |
G. Bonanno and R. Livrea, Periodic solutions for a class of second order Hamiltonian systems, Electronic J. Differential Equations, 115 (2005), 13 pp. |
[5] |
A. Castro and A. C. Lazer, Critical point theory and the number of solutions of a nonlinear Dirichlet problem, Annali Mat. Pura Appl., 120 (1979), 113-137.doi: 10.1007/BF02411940. |
[6] |
F. Clarke, "Optimization and Nonsmooth Analysis," Wiley, New York, 1983. |
[7] |
G. Cordaro, Three periodic solutions to an eigenvalue problem for a class of second-order Hamiltonian systems, Abstr. Appl. Anal., 115 (2003), 1037-1045.doi: 10.1155/S1085337503305044. |
[8] |
F. Faraci, Three periodic solutions for a second order nonautonomous system, J. Nonlinear Convex Anal., 3 (2002), 393-399. |
[9] |
L. Gasinski and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems," Chapman & Hall/CRC, Boca Raton, FL, 2005. |
[10] |
L. Gasinski and N. S. Papageorgiou, "Nonlinear Analysis," Chapman & Hall/CRC, Boca Raton, FL, 2006. |
[11] |
S. Hu and N. S. Papageorgiou, Nontrivial solutions for superquadratic nonautonomous periodic systems, Topol. Methods Nonlinear Anal., 34 (2009), 327-338. |
[12] |
J. Mawhin, Forced second order conservative systems with periodic nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 415-434. |
[13] |
J. Mawhin and M. Willem, "Critical Point Theory And Hamiltonian Systems," Springer-Verlag, New York, 1989. |
[14] |
D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Periodic solutions for nonautonomous systems with nonsmooth quadratic or superquadratic potential, Topol. Methods Nonlinear Anal., 24 (2004), 269-296. |
[15] |
D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Two nontrivial solutions for periodic systems with indefinite linear part, Discrete Contin. Dyn. Syst., 19 (2007), 197-210.doi: 10.3934/dcds.2007.19.197. |
[16] |
D. Motreanu and V. Radulescu, "Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems," Kluwer Academic Publishers, Dordrecht, 2003. |
[17] |
P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), 157-184.doi: 10.1002/cpa.3160310203. |
[18] |
R. E. Showalter, "Hilbert Space Methods for Partial Differential Equations," Pitman, London-San Francisco, Calif.-Melbourne, 1977. |
[19] |
C.-L. Tang and X.-P. Wu, Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems, J. Math. Anal. Appl., 275 (2002), 870-882.doi: 10.1016/S0022-247X(02)00442-0. |
[20] |
K. Thews, Nontrivial solutions of elliptic equations at resonance, Proc. Roy. Soc. Edinburgh Sect. A, 85 (1980), 119-129. |