[1]
|
J. F. G. Auchmuty and G. Nicolis, Bifurcation analysis of nonlinear reaction-diffusion equations. I. Evolution equations and the steady state solutions, Bull. Math. Biology, 37 (1975), 323-365.
|
[2]
|
A. V. Babin and M. I. Vishik, Regular attractors of semigroups and evolution equations, J. Math. Pures Appl., 62 (1983), 441-491.
|
[3]
|
A. V. Babin and M. I. Vishik, "Attractors of Evolutionary Equations," Nauka, Moskow, 1989; English translation, North-Holland, Amsterdam, 1992.
|
[4]
|
A. V. Babin and B. Nicolaenko, Exponential attractors of reaction-diffusion systems in an unbounded domain, J. Dyn. Diff. Eqns., 7 (1995), 567-590.
|
[5]
|
D. L. Benson, J. A. Sherratt and P. K. Maini, Diffusion driven instability in an inhomogeneous domain, Bull. Math. Biology, 55 (1993), 365-384.
|
[6]
|
K. J. Brown and F. A. Davidson, Global bifurcation in the Brusselator system, Nonlinear Analysis, 24 (1995), 1713-1725.
|
[7]
|
V. V. Chepyzhov and M.I. Vishik, "Attractors for Equations of Mathematical Physics," AMS Colloquium Publications, Vol. 49, AMS, Providence, RI, 2002.
|
[8]
|
E. J. Crampin and P. K. Maini, Reaction-diffusion models for biological pattern formation, Methods Appl. Anal., 8 (2001), 415-428.
|
[9]
|
A. Doelman, T. J. Kaper and P. A. Zegeling, Pattern formation in the one-dimensional Gray-Scott model, Nonlinearity, 10 (1997), 523-563.
|
[10]
|
L. Dung, Exponential attractors for a chemotaxis growth system on domains of arbitrary dimension, in "Proceedings of the 4th International Conference on Dynamical Systems and Differential Equations," Wilmington, NC, USA, (2002), 536-543.
|
[11]
|
L. Dung and B. Nicolaenko, Exponential attractors in Banach spaces, J. Dynamics and Diff. Eqns., 13 (2001), 791-806.
|
[12]
|
A. Eden, C. Foias, B. Nicolaenko and R. Temam, "Exponential Attractors for Dissipative Evolution Equations," John Wiley & Sons, Chichester; Masson, Paris, 1994.
|
[13]
|
M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction diffusion systems in $\mathbbR^3$, C.R. Acad. Sci., 330 (2000), 713-718.
|
[14]
|
M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system, Math. Nachr., 272 (2004), 11-31.
|
[15]
|
I. R. Epstein, Complex dynamical behavior in simple chemical systems, J. Phys. Chemistry, 88 (1984), 187-198.
|
[16]
|
P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal continuous stirred tank reactor: Isolas and other forms of multistability, Chem. Eng. Sci., 38 (1983), 29-43.
|
[17]
|
P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Oscillations and instabilities in the system $a+2b\to 3b,b\to c$, Chem. Eng. Sci., 39 (1984), 1087-1097.
|
[18]
|
P. Gray and S. K. Scott, "Chemical Oscillations and Instabilities," Clarendon, Oxford, 1994.
|
[19]
|
D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Springer-Verlag, Berlin, 1981.
|
[20]
|
T. Kolokolnikov, T. Erneux, and J. Wei, Mesa-type patterns in one-dimensional Brusselator and their stability, Physica D, 214 (2006), 63-77.
|
[21]
|
T. Kolokolnikov and J. Wei, On ring-like solutions for the Gray-Scott model: Existence, instability and self-replicating rings, Euro. J. Appl. Math., 16 (2005), 201-237.
|
[22]
|
K. J. Lee, W. D. McCormick, Q. Ouyang and H. Swinney, Pattern formation by interacting chemical fronts, Science, 261 (1993), 192-194.
|
[23]
|
K. J. Lee, W. D. McCormick, J. E. Pearson and H. L. Swinney, Experimental observation of self-replicating spots in areaction-diffusion system, Nature, 369 (1994), 215-218.
|
[24]
|
K. J. Lee and H. L. Swinney, Replicating spots in reaction-diffusion systems, Int. J. Bifurcation and Chaos, 7 (1997), 1149-1158.
|
[25]
|
K. Matsuura and M. Ôtani, Exponential attarctors for a quasilinear parabolic equation, Disc. Cont. Dyn. Sys. Suppl., (2007), 713-720.
|
[26]
|
J. S. McGough and K. Riley, Pattern formation in the Gray-Scott model, Nonlinear Analysis: Real World Applications, \tbf{5} (2004), 105-121.
|
[27]
|
A. J. Milani and N. J. Koksch, "An Introduction to Semiflows," Chapman & Hall/CRC, 2005.
|
[28]
|
D. Morgan and T. Kaper, Axisymmetric ring solutions of the 2D Gray-Scott model and their destabilization into spots, Physica D, 192 (2004), 33-62.
|
[29]
|
C. B. Muratov and V. V. Osipov, Static spike autosolitons in the Gray-Scott model, J. Phys. A, 33 (2000), 8893-8916.
|
[30]
|
K. Osaki, T. Tsujikawa, A. Yagi and M. Minura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Analysis, 51 (2002), 119-144.
|
[31]
|
J. E. Pearson, Complex patterns in a simple system, Science, 261 (1993), 189-192.
|
[32]
|
I. Prigogine and R. Lefever, Symmetry-breaking instabilities in dissipative systems, J. Chem. Physics, 48 (1968), 1695-1700.
|
[33]
|
W. Reynolds, J. E. Pearson and S. Ponce-Dawson, Dynamics of self-replicating patterns in reaction-diffusion systems, Phys. Rev. E, 56 (1997), 185-198.
|
[34]
|
J. C. Robinson, "Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors," Cambridge University Press, Cambridge, UK, 2001.
|
[35]
|
F. Rothe, "Global Solutions of Reaction-Diffusion Systems," Lecture Notes in Math, 1072, Springer-Verlag, Berlin, 1984.
|
[36]
|
J. Schnackenberg, Simple chemical reaction systems with limit cycle behavior, J. Theor. Biology, 81 (1979), 389-400.
|
[37]
|
S. K. Scott and K. Showalter, Simple and complex reaction-diffusion fronts, in "Chemical Waves and Patterns" (R. Kapral and K. Showalter, eds.), Springer, 10 (1995), 485-516.
|
[38]
|
E. E. Selkov, Self-oscillations in glycolysis: a simple kinetic model, European J. Biochem., 4 (1968), 79-86.
|
[39]
|
George R. Sell and Yuncheng You, "Dynamics of Evolutionary Equations," Applied Mathematical Sciences, vol. 143, Springer-Verlag, New York, 2002.
|
[40]
|
L. J. Shaw and J. D. Murray, Analysis of a model for complex skin patterns, SIAM J. Appl. Math., 50 (1990), 628-648.
|
[41]
|
M. Stanislavova, A. Stefanov and B. Wang, Asymptotic smoothing and attractors for the generalized Benjamin-Bona-Mahonay equations on $\Re^3$, J. Dff. Eqns., 219 (2005), 451-483.
|
[42]
|
C. Sun and C. Zhong, Attractors for the semilinear reaction-diffusion equation with distributed derivatives in unbounded domains, Nonlinear Analysis, 63 (2005), 49-65.
|
[43]
|
Roger Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988.
|
[44]
|
B. Wang, Attractors for reaction-diffusion equation in unbounded domains, Physica D, 128 (1999), 41-52.
|
[45]
|
M. J. Ward and J. Wei, The existence and stability of asymmetric spike patterns for the Schnackenberg model, Stud. Appl. Math., 109 (2002), 229-264.
|
[46]
|
J. Wei and M. Winter, Asymmetric spotty patterns for the Gray-Scott model in $\Re^2$, Stud. Appl. Math., 110 (2003), 63-102.
|
[47]
|
J. Wei and M. Winter, Existence and stability of multiple-spot solutions for the Gray-Scott model in $\Re^2$, Physica D, 176 (2003), 147-180.
|
[48]
|
L. Yang, A. M. Zhabotinsky and I. R. Epstein, Stable square and other oscillatory Turing patterns in a reaction-diffusion model, Phys. Rev. Lett., 92 (2004), 198303-1-4.
|
[49]
|
Y. You, Global dynamics of nonlinear wave equations with cubic non-monotone damping, Dynamics of PDE, 1 (2004), 65-86.
|
[50]
|
Y. You, Finite dimensional reduction of global dynamics and lattice dynamics of a damped nonlinear wave equation, in "Control Theory and mathematical Finance" (S. Tang and J. Yong, eds.), World Scientific, (2007), 367-386.
|
[51]
|
Y. You, Global dynamics of the Brusselator equations, Dynamics of PDE, 4 (2007), 167-196.
|
[52]
|
Y. You, Global attractor of the Gray-Scott equations, Comm. Pure Appl. Anal., 7 (2008), 947-970.
|
[53]
|
Y. You, Inertial manifolds for nonautonomous skew product semiflows, Far East J. Appl. Math., 32 (2008), 141-188.
|
[54]
|
Y. You, Asymptotic dynamics of Selkov equations, Disc. Cont. Dyn. Systems, Series S, 2 (2009), 193-219.
|
[55]
|
Y. You, Asymptotic dynamics of the modified Schnackenberg equations, Disc. Cont. Dyn. Systems, Supplement 2009, 857-868.
|