[1]

J. F. G. Auchmuty and G. Nicolis, Bifurcation analysis of nonlinear reactiondiffusion equations. I. Evolution equations and the steady state solutions, Bull. Math. Biology, 37 (1975), 323365.

[2]

A. V. Babin and M. I. Vishik, Regular attractors of semigroups and evolution equations, J. Math. Pures Appl., 62 (1983), 441491.

[3]

A. V. Babin and M. I. Vishik, "Attractors of Evolutionary Equations," Nauka, Moskow, 1989; English translation, NorthHolland, Amsterdam, 1992.

[4]

A. V. Babin and B. Nicolaenko, Exponential attractors of reactiondiffusion systems in an unbounded domain, J. Dyn. Diff. Eqns., 7 (1995), 567590.

[5]

D. L. Benson, J. A. Sherratt and P. K. Maini, Diffusion driven instability in an inhomogeneous domain, Bull. Math. Biology, 55 (1993), 365384.

[6]

K. J. Brown and F. A. Davidson, Global bifurcation in the Brusselator system, Nonlinear Analysis, 24 (1995), 17131725.

[7]

V. V. Chepyzhov and M.I. Vishik, "Attractors for Equations of Mathematical Physics," AMS Colloquium Publications, Vol. 49, AMS, Providence, RI, 2002.

[8]

E. J. Crampin and P. K. Maini, Reactiondiffusion models for biological pattern formation, Methods Appl. Anal., 8 (2001), 415428.

[9]

A. Doelman, T. J. Kaper and P. A. Zegeling, Pattern formation in the onedimensional GrayScott model, Nonlinearity, 10 (1997), 523563.

[10]

L. Dung, Exponential attractors for a chemotaxis growth system on domains of arbitrary dimension, in "Proceedings of the 4th International Conference on Dynamical Systems and Differential Equations," Wilmington, NC, USA, (2002), 536543.

[11]

L. Dung and B. Nicolaenko, Exponential attractors in Banach spaces, J. Dynamics and Diff. Eqns., 13 (2001), 791806.

[12]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, "Exponential Attractors for Dissipative Evolution Equations," John Wiley & Sons, Chichester; Masson, Paris, 1994.

[13]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction diffusion systems in $\mathbbR^3$, C.R. Acad. Sci., 330 (2000), 713718.

[14]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed CahnHilliard system, Math. Nachr., 272 (2004), 1131.

[15]

I. R. Epstein, Complex dynamical behavior in simple chemical systems, J. Phys. Chemistry, 88 (1984), 187198.

[16]

P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal continuous stirred tank reactor: Isolas and other forms of multistability, Chem. Eng. Sci., 38 (1983), 2943.

[17]

P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Oscillations and instabilities in the system $a+2b\to 3b,b\to c$, Chem. Eng. Sci., 39 (1984), 10871097.

[18]

P. Gray and S. K. Scott, "Chemical Oscillations and Instabilities," Clarendon, Oxford, 1994.

[19]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations," SpringerVerlag, Berlin, 1981.

[20]

T. Kolokolnikov, T. Erneux, and J. Wei, Mesatype patterns in onedimensional Brusselator and their stability, Physica D, 214 (2006), 6377.

[21]

T. Kolokolnikov and J. Wei, On ringlike solutions for the GrayScott model: Existence, instability and selfreplicating rings, Euro. J. Appl. Math., 16 (2005), 201237.

[22]

K. J. Lee, W. D. McCormick, Q. Ouyang and H. Swinney, Pattern formation by interacting chemical fronts, Science, 261 (1993), 192194.

[23]

K. J. Lee, W. D. McCormick, J. E. Pearson and H. L. Swinney, Experimental observation of selfreplicating spots in areactiondiffusion system, Nature, 369 (1994), 215218.

[24]

K. J. Lee and H. L. Swinney, Replicating spots in reactiondiffusion systems, Int. J. Bifurcation and Chaos, 7 (1997), 11491158.

[25]

K. Matsuura and M. Ôtani, Exponential attarctors for a quasilinear parabolic equation, Disc. Cont. Dyn. Sys. Suppl., (2007), 713720.

[26]

J. S. McGough and K. Riley, Pattern formation in the GrayScott model, Nonlinear Analysis: Real World Applications, \tbf{5} (2004), 105121.

[27]

A. J. Milani and N. J. Koksch, "An Introduction to Semiflows," Chapman & Hall/CRC, 2005.

[28]

D. Morgan and T. Kaper, Axisymmetric ring solutions of the 2D GrayScott model and their destabilization into spots, Physica D, 192 (2004), 3362.

[29]

C. B. Muratov and V. V. Osipov, Static spike autosolitons in the GrayScott model, J. Phys. A, 33 (2000), 88938916.

[30]

K. Osaki, T. Tsujikawa, A. Yagi and M. Minura, Exponential attractor for a chemotaxisgrowth system of equations, Nonlinear Analysis, 51 (2002), 119144.

[31]

J. E. Pearson, Complex patterns in a simple system, Science, 261 (1993), 189192.

[32]

I. Prigogine and R. Lefever, Symmetrybreaking instabilities in dissipative systems, J. Chem. Physics, 48 (1968), 16951700.

[33]

W. Reynolds, J. E. Pearson and S. PonceDawson, Dynamics of selfreplicating patterns in reactiondiffusion systems, Phys. Rev. E, 56 (1997), 185198.

[34]

J. C. Robinson, "InfiniteDimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors," Cambridge University Press, Cambridge, UK, 2001.

[35]

F. Rothe, "Global Solutions of ReactionDiffusion Systems," Lecture Notes in Math, 1072, SpringerVerlag, Berlin, 1984.

[36]

J. Schnackenberg, Simple chemical reaction systems with limit cycle behavior, J. Theor. Biology, 81 (1979), 389400.

[37]

S. K. Scott and K. Showalter, Simple and complex reactiondiffusion fronts, in "Chemical Waves and Patterns" (R. Kapral and K. Showalter, eds.), Springer, 10 (1995), 485516.

[38]

E. E. Selkov, Selfoscillations in glycolysis: a simple kinetic model, European J. Biochem., 4 (1968), 7986.

[39]

George R. Sell and Yuncheng You, "Dynamics of Evolutionary Equations," Applied Mathematical Sciences, vol. 143, SpringerVerlag, New York, 2002.

[40]

L. J. Shaw and J. D. Murray, Analysis of a model for complex skin patterns, SIAM J. Appl. Math., 50 (1990), 628648.

[41]

M. Stanislavova, A. Stefanov and B. Wang, Asymptotic smoothing and attractors for the generalized BenjaminBonaMahonay equations on $\Re^3$, J. Dff. Eqns., 219 (2005), 451483.

[42]

C. Sun and C. Zhong, Attractors for the semilinear reactiondiffusion equation with distributed derivatives in unbounded domains, Nonlinear Analysis, 63 (2005), 4965.

[43]

Roger Temam, "InfiniteDimensional Dynamical Systems in Mechanics and Physics," Applied Mathematical Sciences, vol. 68, SpringerVerlag, New York, 1988.

[44]

B. Wang, Attractors for reactiondiffusion equation in unbounded domains, Physica D, 128 (1999), 4152.

[45]

M. J. Ward and J. Wei, The existence and stability of asymmetric spike patterns for the Schnackenberg model, Stud. Appl. Math., 109 (2002), 229264.

[46]

J. Wei and M. Winter, Asymmetric spotty patterns for the GrayScott model in $\Re^2$, Stud. Appl. Math., 110 (2003), 63102.

[47]

J. Wei and M. Winter, Existence and stability of multiplespot solutions for the GrayScott model in $\Re^2$, Physica D, 176 (2003), 147180.

[48]

L. Yang, A. M. Zhabotinsky and I. R. Epstein, Stable square and other oscillatory Turing patterns in a reactiondiffusion model, Phys. Rev. Lett., 92 (2004), 19830314.

[49]

Y. You, Global dynamics of nonlinear wave equations with cubic nonmonotone damping, Dynamics of PDE, 1 (2004), 6586.

[50]

Y. You, Finite dimensional reduction of global dynamics and lattice dynamics of a damped nonlinear wave equation, in "Control Theory and mathematical Finance" (S. Tang and J. Yong, eds.), World Scientific, (2007), 367386.

[51]

Y. You, Global dynamics of the Brusselator equations, Dynamics of PDE, 4 (2007), 167196.

[52]

Y. You, Global attractor of the GrayScott equations, Comm. Pure Appl. Anal., 7 (2008), 947970.

[53]

Y. You, Inertial manifolds for nonautonomous skew product semiflows, Far East J. Appl. Math., 32 (2008), 141188.

[54]

Y. You, Asymptotic dynamics of Selkov equations, Disc. Cont. Dyn. Systems, Series S, 2 (2009), 193219.

[55]

Y. You, Asymptotic dynamics of the modified Schnackenberg equations, Disc. Cont. Dyn. Systems, Supplement 2009, 857868.
