September  2011, 10(5): 1537-1548. doi: 10.3934/cpaa.2011.10.1537

Fluctuation and extinction dynamics in host-microparasite systems

1. 

Department of Mathematics, College of Medicine, Third Military Medical University, Chongqing, 400038

2. 

Department of Mathematics, Arizona State University, Tempe, AZ 85287-1804

Received  August 2009 Revised  August 2010 Published  April 2011

Although experimental and observational studies have shown that microparasites can induce the deterministic reduction, fluctuation and extinction scenarios for its host population, most existing host-parasite interaction models fail to produce such rich dynamical behaviors simultaneously. We explore the effects of explicit dynamics of parasites under logistic host growth and different infection rate function. Our results show that the explicit dynamics of parasites and standard incidence function can induce the host density fluctuation and extinction scenario in the case of logistic host growth.
Citation: Kaifa Wang, Yang Kuang. Fluctuation and extinction dynamics in host-microparasite systems. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1537-1548. doi: 10.3934/cpaa.2011.10.1537
References:
[1]

R. M. Anderson and R. M. May, Population biology of infectious diseases I,, Nature (London), 280 (1979), 361. Google Scholar

[2]

R. M. Anderson and R. M. May, The population dynamics of microparasites and their invertebrate hosts,, Phil. Tran. R. Soc. Lond. B, 291 (1981), 451. Google Scholar

[3]

S. Bonhoeffer, J. M. Coffin and M. A. Nowak, Human immunodeficiency virus drug therapy and virus load,, J. Virol., 71 (1997), 3275. Google Scholar

[4]

M. Bralet, S. Branchereau, C. Brechot and N. Ferry, Cell lineage study in the liver using retroviral mediated gene transfer,, Am. J. Pathol., 144 (1994), 896. Google Scholar

[5]

Y. K. Chun, J. Y. Kim, H. J. Woo, S. M. Oh, I. Kang, J. Ha and S. S. Kim, No significant correlation exists between core promoter mutations, viral replication, and liver damage in chronic hepatitis B infection,, Hepatology, 32 (2000), 1154. doi: 10.1053/jhep.2000.19623. Google Scholar

[6]

S. M. Ciupe, R. M. Ribeiro, P. W. Nelson, G. Dusheiko and A. S. Perelson, The role of cells refractory to productive infection in acute hepatitis B viral dynamics,, Proc. Natl. Acad. Sci. USA, 104 (2007), 5050. doi: 10.1073/pnas.0603626104. Google Scholar

[7]

G. Deng, Z. Wang, Y. Wang, K. Wang and Y. Fan, Dynamic determination and analysis of serum virus load in patients with chronic HBV infection,, World Chin. J. Digestol., 12 (2004), 862. Google Scholar

[8]

D. Ebert, "Ecology, Epidemiology, and Evolution of Parasitism in Daphnia," [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information., Available from: \indent\url{http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Books}. 2005., (2005). Google Scholar

[9]

D. Ebert, M. Lipsitch and K. L. Mangin, The effect of parasites on host population density and extinction: experimental epidemiology with Daphnia and six microparasites,, Am. Nat., 156 (2000), 459. Google Scholar

[10]

S. Eikenberry, S. Hews, J. D. Nagy and Y. Kuang, The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth,, Math. Biosci. Eng., 6 (2009), 283. doi: 10.3934/mbe.2009.6.283. Google Scholar

[11]

S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection,, J. Biol. Dyn., 2 (2008), 140. doi: 10.1080/17513750701769873. Google Scholar

[12]

S. H. Hews, S. Eikenberry, J. D. Nagy and Y. Kuang, Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth,, J. Math. Biol., 60 (2010), 573. doi: 10.1007/s00285-009-0278-3. Google Scholar

[13]

T. W. Hwang and Y. Kuang, Deterministic extinction effect of parasites on host populations,, J. Math. Biol., 46 (2003), 17. doi: 10.1007/s00285-002-0165-7. Google Scholar

[14]

T. W. Hwang and Y. Kuang, Host extinction dynamics in a simple parasite-host interaction model,, Math. Biosci. Eng., 2 (2005), 743. Google Scholar

[15]

W. M. Lee, Acute liver failure,, New Engl. J. Med., 329 (1993), 1862. Google Scholar

[16]

R. A. MacDonald, "Lifespan" of liver cells. Autoradio-graphic study using tritiated thymidine in normal, cirrhotic, and partially hepatectomized rats,, Arch. Intern. Med., 107 (1961), 335. Google Scholar

[17]

G. K. Michalopoulos, Liver Regeneration,, J. Cell. Physiol., 213 (2007), 286. doi: 10.1002/jcp.21172. Google Scholar

[18]

L. Min, Y. Su and Y. Kuang, Mathematical analysis of a basic virus infection model with application to HBV infection,, Rocky Mount. J. Math., 38 (2008), 1573. doi: 10.1216/RMJ-2008-38-5-1573. Google Scholar

[19]

M. A. Nowak and R. M. May, "Virus Dynamics,", Oxford University Press, (2000). Google Scholar

[20]

P. Pontisso, G. Bellati, M. Brunetto, L. Chemello, G. Colloredo, R. DiStefano, M. Nicoletti, M. G. Rumi, M. G. Ruvoletto, R. Soffedini, L. M. Valenza and G. Colucci, Hepatitis C virus RNA profiles in chronically infected individuals: do they relate to disease activity?, Hepatology, 29 (1999), 585. doi: 10.1002/hep.510290240. Google Scholar

[21]

J. L. Spouge, R. I. Shrager and D. S. Dimitrov, HIV-1 infection kinetics in tissue cultures,, Math. Biosci., 138 (1996), 1. doi: 10.1016/S0025-5564(96)00064-8. Google Scholar

[22]

H. C. Tuckwell and F. Y. M. Wan, On the behavior of solutions in viral dynamical models,, BioSystems, 73 (2004), 157. doi: 10.1016/j.biosystems.2003.11.004. Google Scholar

[23]

K. Wang, Z. Qiu and G. Deng, Study on a population dynamic model of virus infection,, J. Sys. Sci. $&$ Math. Scis., 23 (2003), 433. Google Scholar

[24]

S. A. Whalley, J. M. Murray, D. Brown, G. J. M. Webster, V. C. Emery, G. M. Dusheiko and A. S. Perelson, Kinetics of acute hepatitis B virus infection in humans,, J. Exp. Med., 193 (2001), 847. doi: 10.1084/jem.193.7.847. Google Scholar

[25]

D. Wodarz, J. P. Christensen and A. R. Thomsen, The importance of lytic and nonlytic immune responses in viral infections,, TRENDS in Immunology, 23 (2002), 194. doi: 10.1016/S1471-4906(02)02189-0. Google Scholar

[26]

H. R. Zhu and H. L. Smith, Stable periodic orbits for a class of three-dimensional competitive systems,, J. Diff. Equa., 110 (1994), 143. doi: 10.1006/jdeq.1994.1063. Google Scholar

show all references

References:
[1]

R. M. Anderson and R. M. May, Population biology of infectious diseases I,, Nature (London), 280 (1979), 361. Google Scholar

[2]

R. M. Anderson and R. M. May, The population dynamics of microparasites and their invertebrate hosts,, Phil. Tran. R. Soc. Lond. B, 291 (1981), 451. Google Scholar

[3]

S. Bonhoeffer, J. M. Coffin and M. A. Nowak, Human immunodeficiency virus drug therapy and virus load,, J. Virol., 71 (1997), 3275. Google Scholar

[4]

M. Bralet, S. Branchereau, C. Brechot and N. Ferry, Cell lineage study in the liver using retroviral mediated gene transfer,, Am. J. Pathol., 144 (1994), 896. Google Scholar

[5]

Y. K. Chun, J. Y. Kim, H. J. Woo, S. M. Oh, I. Kang, J. Ha and S. S. Kim, No significant correlation exists between core promoter mutations, viral replication, and liver damage in chronic hepatitis B infection,, Hepatology, 32 (2000), 1154. doi: 10.1053/jhep.2000.19623. Google Scholar

[6]

S. M. Ciupe, R. M. Ribeiro, P. W. Nelson, G. Dusheiko and A. S. Perelson, The role of cells refractory to productive infection in acute hepatitis B viral dynamics,, Proc. Natl. Acad. Sci. USA, 104 (2007), 5050. doi: 10.1073/pnas.0603626104. Google Scholar

[7]

G. Deng, Z. Wang, Y. Wang, K. Wang and Y. Fan, Dynamic determination and analysis of serum virus load in patients with chronic HBV infection,, World Chin. J. Digestol., 12 (2004), 862. Google Scholar

[8]

D. Ebert, "Ecology, Epidemiology, and Evolution of Parasitism in Daphnia," [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information., Available from: \indent\url{http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Books}. 2005., (2005). Google Scholar

[9]

D. Ebert, M. Lipsitch and K. L. Mangin, The effect of parasites on host population density and extinction: experimental epidemiology with Daphnia and six microparasites,, Am. Nat., 156 (2000), 459. Google Scholar

[10]

S. Eikenberry, S. Hews, J. D. Nagy and Y. Kuang, The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth,, Math. Biosci. Eng., 6 (2009), 283. doi: 10.3934/mbe.2009.6.283. Google Scholar

[11]

S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection,, J. Biol. Dyn., 2 (2008), 140. doi: 10.1080/17513750701769873. Google Scholar

[12]

S. H. Hews, S. Eikenberry, J. D. Nagy and Y. Kuang, Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth,, J. Math. Biol., 60 (2010), 573. doi: 10.1007/s00285-009-0278-3. Google Scholar

[13]

T. W. Hwang and Y. Kuang, Deterministic extinction effect of parasites on host populations,, J. Math. Biol., 46 (2003), 17. doi: 10.1007/s00285-002-0165-7. Google Scholar

[14]

T. W. Hwang and Y. Kuang, Host extinction dynamics in a simple parasite-host interaction model,, Math. Biosci. Eng., 2 (2005), 743. Google Scholar

[15]

W. M. Lee, Acute liver failure,, New Engl. J. Med., 329 (1993), 1862. Google Scholar

[16]

R. A. MacDonald, "Lifespan" of liver cells. Autoradio-graphic study using tritiated thymidine in normal, cirrhotic, and partially hepatectomized rats,, Arch. Intern. Med., 107 (1961), 335. Google Scholar

[17]

G. K. Michalopoulos, Liver Regeneration,, J. Cell. Physiol., 213 (2007), 286. doi: 10.1002/jcp.21172. Google Scholar

[18]

L. Min, Y. Su and Y. Kuang, Mathematical analysis of a basic virus infection model with application to HBV infection,, Rocky Mount. J. Math., 38 (2008), 1573. doi: 10.1216/RMJ-2008-38-5-1573. Google Scholar

[19]

M. A. Nowak and R. M. May, "Virus Dynamics,", Oxford University Press, (2000). Google Scholar

[20]

P. Pontisso, G. Bellati, M. Brunetto, L. Chemello, G. Colloredo, R. DiStefano, M. Nicoletti, M. G. Rumi, M. G. Ruvoletto, R. Soffedini, L. M. Valenza and G. Colucci, Hepatitis C virus RNA profiles in chronically infected individuals: do they relate to disease activity?, Hepatology, 29 (1999), 585. doi: 10.1002/hep.510290240. Google Scholar

[21]

J. L. Spouge, R. I. Shrager and D. S. Dimitrov, HIV-1 infection kinetics in tissue cultures,, Math. Biosci., 138 (1996), 1. doi: 10.1016/S0025-5564(96)00064-8. Google Scholar

[22]

H. C. Tuckwell and F. Y. M. Wan, On the behavior of solutions in viral dynamical models,, BioSystems, 73 (2004), 157. doi: 10.1016/j.biosystems.2003.11.004. Google Scholar

[23]

K. Wang, Z. Qiu and G. Deng, Study on a population dynamic model of virus infection,, J. Sys. Sci. $&$ Math. Scis., 23 (2003), 433. Google Scholar

[24]

S. A. Whalley, J. M. Murray, D. Brown, G. J. M. Webster, V. C. Emery, G. M. Dusheiko and A. S. Perelson, Kinetics of acute hepatitis B virus infection in humans,, J. Exp. Med., 193 (2001), 847. doi: 10.1084/jem.193.7.847. Google Scholar

[25]

D. Wodarz, J. P. Christensen and A. R. Thomsen, The importance of lytic and nonlytic immune responses in viral infections,, TRENDS in Immunology, 23 (2002), 194. doi: 10.1016/S1471-4906(02)02189-0. Google Scholar

[26]

H. R. Zhu and H. L. Smith, Stable periodic orbits for a class of three-dimensional competitive systems,, J. Diff. Equa., 110 (1994), 143. doi: 10.1006/jdeq.1994.1063. Google Scholar

[1]

Tzy-Wei Hwang, Yang Kuang. Host Extinction Dynamics in a Simple Parasite-Host Interaction Model. Mathematical Biosciences & Engineering, 2005, 2 (4) : 743-751. doi: 10.3934/mbe.2005.2.743

[2]

Zhenguo Bai, Yicang Zhou. Threshold dynamics of a bacillary dysentery model with seasonal fluctuation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 1-14. doi: 10.3934/dcdsb.2011.15.1

[3]

Kaifa Wang, Yang Kuang. Novel dynamics of a simple Daphnia-microparasite model with dose-dependent infection. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1599-1610. doi: 10.3934/dcdss.2011.4.1599

[4]

Roland Pulch. Stability preservation in Galerkin-type projection-based model order reduction. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 23-44. doi: 10.3934/naco.2019003

[5]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157

[6]

Qingkai Kong, Zhipeng Qiu, Zi Sang, Yun Zou. Optimal control of a vector-host epidemics model. Mathematical Control & Related Fields, 2011, 1 (4) : 493-508. doi: 10.3934/mcrf.2011.1.493

[7]

Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864

[8]

S. R.-J. Jang. Allee effects in a discrete-time host-parasitoid model with stage structure in the host. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 145-159. doi: 10.3934/dcdsb.2007.8.145

[9]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[10]

Georg Hetzer, Tung Nguyen, Wenxian Shen. Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1699-1722. doi: 10.3934/cpaa.2012.11.1699

[11]

Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041

[12]

Stephen Pankavich, Deborah Shutt. An in-host model of HIV incorporating latent infection and viral mutation. Conference Publications, 2015, 2015 (special) : 913-922. doi: 10.3934/proc.2015.0913

[13]

Adam Sullivan, Folashade Agusto, Sharon Bewick, Chunlei Su, Suzanne Lenhart, Xiaopeng Zhao. A mathematical model for within-host Toxoplasma gondii invasion dynamics. Mathematical Biosciences & Engineering, 2012, 9 (3) : 647-662. doi: 10.3934/mbe.2012.9.647

[14]

Peter Hinow, Philip Gerlee, Lisa J. McCawley, Vito Quaranta, Madalina Ciobanu, Shizhen Wang, Jason M. Graham, Bruce P. Ayati, Jonathan Claridge, Kristin R. Swanson, Mary Loveless, Alexander R. A. Anderson. A spatial model of tumor-host interaction: Application of chemotherapy. Mathematical Biosciences & Engineering, 2009, 6 (3) : 521-546. doi: 10.3934/mbe.2009.6.521

[15]

Shangbing Ai. Multiple positive periodic solutions for a delay host macroparasite model. Communications on Pure & Applied Analysis, 2004, 3 (2) : 175-182. doi: 10.3934/cpaa.2004.3.175

[16]

Jianquan Li, Yanni Xiao, Yali Yang. Global analysis of a simple parasite-host model with homoclinic orbits. Mathematical Biosciences & Engineering, 2012, 9 (4) : 767-784. doi: 10.3934/mbe.2012.9.767

[17]

Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060

[18]

Cameron J. Browne, Sergei S. Pilyugin. Global analysis of age-structured within-host virus model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 1999-2017. doi: 10.3934/dcdsb.2013.18.1999

[19]

Andrei Korobeinikov, Conor Dempsey. A continuous phenotype space model of RNA virus evolution within a host. Mathematical Biosciences & Engineering, 2014, 11 (4) : 919-927. doi: 10.3934/mbe.2014.11.919

[20]

Yongli Cai, Weiming Wang. Dynamics of a parasite-host epidemiological model in spatial heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 989-1013. doi: 10.3934/dcdsb.2015.20.989

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]