November  2011, 10(6): 1549-1566. doi: 10.3934/cpaa.2011.10.1549

A decomposition theorem for $BV$ functions

1. 

SISSA, via Bonomea, 265, Trieste, 34136, Italy, Italy

Received  May 2010 Revised  March 2011 Published  May 2011

The Jordan decomposition states that a function $f: R\to R$ is of bounded variation if and only if it can be written as the difference of two monotone increasing functions.
In this paper we generalize this property to real valued $BV$ functions of many variables, extending naturally the concept of monotone function. Our result is an extension of a result obtained by Alberti, Bianchini and Crippa.
A counterexample is given which prevents further extensions.
Citation: Stefano Bianchini, Daniela Tonon. A decomposition theorem for $BV$ functions. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1549-1566. doi: 10.3934/cpaa.2011.10.1549
References:
[1]

G. Alberti, S. Bianchini and G. Crippa, Invariants for weakly regular ODE flows, to appear.

[2]

L. Ambrosio, V. Caselles, S. Masnou and J. M. Morel, Connected components of sets of finite perimeter and applications to image processing, J. Eur. Math. Soc. (JEMS), 3 (2001), 39-92. doi: 10.1007/PL00011302.

[3]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems," Oxford University Press, 2000.

[4]

R. Engelking, "General Topology," PWN, Warsaw, 1977.

[5]

P. Hajlasz and J. Malý, Approximation in Soblev spaces of nonlinear expressions involving the gradient, Ark. Mat., 40 (2002), 245-274. doi: 10.1007/BF02384536.

[6]

J. J. Manfredi, Weakly monotone functions, J. Geom. Anal., 4 (1994), 393-402.

show all references

References:
[1]

G. Alberti, S. Bianchini and G. Crippa, Invariants for weakly regular ODE flows, to appear.

[2]

L. Ambrosio, V. Caselles, S. Masnou and J. M. Morel, Connected components of sets of finite perimeter and applications to image processing, J. Eur. Math. Soc. (JEMS), 3 (2001), 39-92. doi: 10.1007/PL00011302.

[3]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems," Oxford University Press, 2000.

[4]

R. Engelking, "General Topology," PWN, Warsaw, 1977.

[5]

P. Hajlasz and J. Malý, Approximation in Soblev spaces of nonlinear expressions involving the gradient, Ark. Mat., 40 (2002), 245-274. doi: 10.1007/BF02384536.

[6]

J. J. Manfredi, Weakly monotone functions, J. Geom. Anal., 4 (1994), 393-402.

[1]

Tomoharu Suda. Construction of Lyapunov functions using Helmholtz–Hodge decomposition. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2437-2454. doi: 10.3934/dcds.2019103

[2]

Thiago Ferraiol, Mauro Patrão, Lucas Seco. Jordan decomposition and dynamics on flag manifolds. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 923-947. doi: 10.3934/dcds.2010.26.923

[3]

Gunther Dirr, Hiroshi Ito, Anders Rantzer, Björn S. Rüffer. Separable Lyapunov functions for monotone systems: Constructions and limitations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2497-2526. doi: 10.3934/dcdsb.2015.20.2497

[4]

Víctor Ayala, Adriano Da Silva, Philippe Jouan. Jordan decomposition and the recurrent set of flows of automorphisms. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1543-1559. doi: 10.3934/dcds.2020330

[5]

Dušan M. Stipanović, Claire J. Tomlin, George Leitmann. A note on monotone approximations of minimum and maximum functions and multi-objective problems. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 487-493. doi: 10.3934/naco.2011.1.487

[6]

Davide Addona, Giorgio Menegatti, Michele Miranda jr.. $ BV $ functions on open domains: the Wiener case and a Fomin differentiable case. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2679-2711. doi: 10.3934/cpaa.2020117

[7]

Dominik Hafemeyer, Florian Mannel, Ira Neitzel, Boris Vexler. Finite element error estimates for one-dimensional elliptic optimal control by BV-functions. Mathematical Control and Related Fields, 2020, 10 (2) : 333-363. doi: 10.3934/mcrf.2019041

[8]

Evelyn Herberg, Michael Hinze. Variational discretization of one-dimensional elliptic optimal control problems with BV functions based on the mixed formulation. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022013

[9]

Leon Ehrenpreis. Special functions. Inverse Problems and Imaging, 2010, 4 (4) : 639-647. doi: 10.3934/ipi.2010.4.639

[10]

Sihem Mesnager, Fengrong Zhang, Yong Zhou. On construction of bent functions involving symmetric functions and their duals. Advances in Mathematics of Communications, 2017, 11 (2) : 347-352. doi: 10.3934/amc.2017027

[11]

Claude Carlet. Parameterization of Boolean functions by vectorial functions and associated constructions. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022013

[12]

Peter Giesl, Sigurdur Hafstein. Computational methods for Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : i-ii. doi: 10.3934/dcdsb.2015.20.8i

[13]

Heping Liu, Yu Liu. Refinable functions on the Heisenberg group. Communications on Pure and Applied Analysis, 2007, 6 (3) : 775-787. doi: 10.3934/cpaa.2007.6.775

[14]

M.T. Boudjelkha. Extended Riemann Bessel functions. Conference Publications, 2005, 2005 (Special) : 121-130. doi: 10.3934/proc.2005.2005.121

[15]

Jian-Hua Zheng. Dynamics of hyperbolic meromorphic functions. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2273-2298. doi: 10.3934/dcds.2015.35.2273

[16]

Janina Kotus, Mariusz Urbański. The dynamics and geometry of the Fatou functions. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 291-338. doi: 10.3934/dcds.2005.13.291

[17]

Włodzimierz M. Tulczyjew, Paweł Urbański. Regularity of generating families of functions. Journal of Geometric Mechanics, 2010, 2 (2) : 199-221. doi: 10.3934/jgm.2010.2.199

[18]

J. A. Barceló, M. Folch-Gabayet, S. Pérez-Esteva, A. Ruiz, M. C. Vilela. Elastic Herglotz functions in the plane. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1495-1505. doi: 10.3934/cpaa.2010.9.1495

[19]

Laura Abatangelo, Susanna Terracini. Harmonic functions in union of chambers. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5609-5629. doi: 10.3934/dcds.2015.35.5609

[20]

Constanza Riera, Pantelimon Stănică. Landscape Boolean functions. Advances in Mathematics of Communications, 2019, 13 (4) : 613-627. doi: 10.3934/amc.2019038

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (231)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]