November  2011, 10(6): 1687-1706. doi: 10.3934/cpaa.2011.10.1687

Self-adjoint, globally defined Hamiltonian operators for systems with boundaries

1. 

Universidade Lusófona de Humanidades e Tecnologias, Av. Campo Grande 376, 1749-024 Lisboa, Portugal, Portugal

2. 

Dipartimento di Scienze Fisiche e Matematiche, Università dell'Insubria, via valleggio 11, I-22100 Como, Italy

Received  March 2010 Revised  February 2011 Published  May 2011

For a general self-adjoint Hamiltonian operator $H_0$ on the Hilbert space $L^2(R^d)$, we determine the set of all self-adjoint Hamiltonians $H$ on $L^2(R^d)$ that dynamically confine the system to an open set $\Omega \subset \RE^d$ while reproducing the action of $ H_0$ on an appropriate operator domain. In the case $H_0=-\Delta +V$ we construct these Hamiltonians explicitly showing that they can be written in the form $H=H_0+ B$, where $B$ is a singular boundary potential and $H$ is self-adjoint on its maximal domain. An application to the deformation quantization of one-dimensional systems with boundaries is also presented.
Citation: Nuno Costa Dias, Andrea Posilicano, João Nuno Prata. Self-adjoint, globally defined Hamiltonian operators for systems with boundaries. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1687-1706. doi: 10.3934/cpaa.2011.10.1687
References:
[1]

N. Akhiezer and I. Glazman, "Theory of Linear Operators in Hilbert Space,", Pitman, (1981). Google Scholar

[2]

S. Albeverio, F. Gesztesy, R. Högh-Krohn and H. Holden, "Solvable Models in Quantum Mechanics,", 2$^{nd}$ edition, (2005). Google Scholar

[3]

G. A. Baker, Formulation of quantum mechanics based on the quasi-probability distribution induced on phase space,, Phys. Rev., 109 (1958), 2198. Google Scholar

[4]

F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. F. Sternheimer, Deformation theory and quantization, I and II,, Ann. Phys., 111 (1978), 61. Google Scholar

[5]

F. A. Berezin and L. D. Fadeev, Remark on the Schröinger equation with singular potential,, Dokl. Akad. Nauk. SSSR, 137 (1961), 1011. Google Scholar

[6]

J. Behrndt and M. Langer, Boundary value problems for elliptic partial differential operators on bounded domains,, J. Funct. Anal., 243 (2007), 536. Google Scholar

[7]

M. S. Birman and M. Z. Solomjak, "Spectral Theory of Self-Adjoint Operators in Hilbert Spaces,", Reidel, (1987). Google Scholar

[8]

Ph. Blanchard, R. Figari and A. Mantile, Point interaction Hamiltonians in bounded domains,, J. Math. Phys., 48 (2007). Google Scholar

[9]

J. Blank, P. Exner and M. Havlíček, "Hilbert Space Operators in Quantum Physics,'', 2$^{nd}$ edition, (2008). Google Scholar

[10]

G. Bonneau, J. Faraut and G. Valent, Self-adjoint extensions of operators and the teaching of quantum mechanics,, Am. J. Phys., 69 (2001), 322. Google Scholar

[11]

A. Bracken, G. Cassinelli and J. Wood, Quantum symmetries and the Weyl-Wigner product of group representations,, preprint, (). Google Scholar

[12]

B. M. Brown, M. Marletta, S. Naboko and I. G. Wood, Boundary triplets and M-functions for non-selfadjoint operators, with applications to elliptic PDEs and block operator matrices,, J. Lond. Math. Soc., 77 (2008), 700. Google Scholar

[13]

B. M. Brown, G. Grubb and I. G. Wood, M-functions for closed extensions of adjoint pairs of operators with applications to elliptic boundary problems,, Math. Nachr., 282 (2009), 314. Google Scholar

[14]

C. Cacciapuoti, R. Carlone and R. Figari, Spin dependent point potentials in one and three dimensions,, J. Phys. A: Math. Gen., 40 (2007), 249. Google Scholar

[15]

J. W. Calkin, Abstract symmetric boundary conditions,, Trans. Am. Math. Soc., 45 (1939), 369. Google Scholar

[16]

A. Connes, "Noncommutative Geometry,", Academic Press, (1994). Google Scholar

[17]

C. R. de Oliveira, "Intermediate Spectral Theory and Quantum Dynamics,", Birkh\, (2009). Google Scholar

[18]

N. C. Dias and J. N. Prata, Wigner functions with boundaries,, J. Math. Phys., 43 (2002), 4602. Google Scholar

[19]

N. C. Dias, A. Posilicano and J. N. Prata, in, in preparation., (). Google Scholar

[20]

N. C. Dias and J. N. Prata, Admissible states in quantum phase space,, Ann. Phys., 313 (2004), 110. Google Scholar

[21]

N. C. Dias and J. N. Prata, Comment on "On infinite walls in deformation quantization",, Ann. Phys., 321 (2006), 495. Google Scholar

[22]

D. Dubin, M. Hennings and T. Smith, "Mathematical Aspects of Weyl Quantization,", World Scientific, (2000). Google Scholar

[23]

W. Faris, "Self-Adjoint Operators,", Lecture Notes in Mathematics {\bf 433}, 433 (1975). Google Scholar

[24]

D. Fairlie, The formulation of quantum mechanics in terms of phase space functions,, Proc. Camb. Phil. Soc., 60 (1964), 581. Google Scholar

[25]

B. Fedosov, A simple geometric construction of deformation quantization,, J. Diff. Geom., 40 (1994), 213. Google Scholar

[26]

R. Gambini and R. A. Porto, Relational time in generally covariant quantum systems: four models,, Phys. Rev., D 63 (2001). Google Scholar

[27]

P. Garbaczewski and W. Karwowski, Impenetrable barriers and canonical quantization,, Am. J. Phys., 72 (2004), 924. Google Scholar

[28]

F. Gesztesy and M. Mitrea, Robin-to-Robin maps and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains, in "Modern Analysis and Applications. The Mark Krein Centenary Conference. Vol. 2: Differential Operators and Mechanics'', (eds. V. Adamyan et al.), (2009), 81. Google Scholar

[29]

F. Gesztesy and M. Mitrea, Generalized Robin boundary conditions, Robin-to-Dirichlet maps, and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains,, in, 79 (2008), 105. Google Scholar

[30]

V. I. Gorbachuk and M. L. Gorbachuk, "Boundary Value Problems for Operator Differential Equations,", Kluver, (1991). Google Scholar

[31]

M. de Gosson and F. Luef, A new approach to the $\star$-genvalue equation,, Lett. Math. Phys., 85 (2008), 173. Google Scholar

[32]

G. Grubb, A characterization of the non local boundary value problems associated with an elliptic operator,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1968), 425. Google Scholar

[33]

G. Grubb, Krein resolvent formulas for elliptic boundary problems in nonsmooth domains,, Rend. Sem. Mat. Univ. Pol. Torino, 66 (2008), 271. Google Scholar

[34]

C. Isham, Topological and global aspects of quantum theory,, in, (1984), 1059. Google Scholar

[35]

M. Kontsevich, Deformation quantization of Poisson manifolds I,, Lett. Math. Phys., 66 (2003), 157. Google Scholar

[36]

M. G. Kre\u\i n, The theory of self-adjoint extensions of half-bounded Hermitean operators and their applications I,, Mat. Sbornik N.S., 20 (1947), 431. Google Scholar

[37]

M. G. Kreĭn, The theory of self-adjoint extensions of half-bounded Hermitean operators and their applications II,, Mat. Sbornik N.S., 21 (1947), 365. Google Scholar

[38]

K. Kowalski, K. Podlaski and J. Rembieliński, Quantum mechanics of a free particle on a plane with an extracted point,, Phys. Rev. A, 66 (2002), 032118. Google Scholar

[39]

S. Kryukov and M. A. Walton, On infinite walls in deformation quantization,, Ann. Phys., 317 (2005), 474. Google Scholar

[40]

J. L. Lions and E. Magenes, Problèmes aux limites non homogènes II,, Ann. Institut Fourier, 11 (1961), 137. Google Scholar

[41]

J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications I,", Springer-Verlag, (1972). Google Scholar

[42]

J. Madore, "An Introduction to Noncommutative Differential Geometry and its Physical Applications,", 2$^{nd}$ edition, (2000). Google Scholar

[43]

M. A. Naimark, "Theory of Linear Differential Operators,", Frederick Ungar Publishing Co., (1967). Google Scholar

[44]

J. von Neumann, Allgemeine eigenwerttheorie Hermitscher funktionaloperatoren,, Math. Ann., 102 (1929), 49. Google Scholar

[45]

J. von Neumann, "Mathematische Grundlagen der Quantenmechanik,", Springer-Verlag, (1932). Google Scholar

[46]

A. Pinzul and A. Stern, Absence of the holographic principle in noncommutative Chern-Simons theory,, J. High Energy Phys., 0111 (2001). Google Scholar

[47]

A. Posilicano, A Krein-like formula for singular perturbations of self-adjoint operators and applications,, J. Funct. Anal., 183 (2001), 109. Google Scholar

[48]

A. Posilicano, Self-adjoint extensions by additive perturbations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2 (2003), 1. Google Scholar

[49]

A. Posilicano, Self-adjoint extensions of restrictions,, Oper. Matrices, 2 (2008), 483. Google Scholar

[50]

A. Posilicano and L. Raimondi, Krein's resolvent formula for self-adjoint extensions of symmetric second order elliptic differential operators,, J. Phys. A: Math. Theor., 42 (2009). Google Scholar

[51]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics. Vol. II: Fourier Analysis, Self-Adjointness,", Academic Press, (1975). Google Scholar

[52]

V. Ryzhov, A general boundary value problem and its Weyl function,, Opuscula Math., 27 (2007), 305. Google Scholar

[53]

N. Seiberg and E. Witten, String theory and noncommutative geometry,, J. High Energy Phys., 9909 (1999). Google Scholar

[54]

M. L. Višik, On general boundary problems for elliptic differential equations,, Trudy Mosc. Mat. Obsv., 1 (1952), 186. Google Scholar

[55]

B. Voronov, D. Gitman and I. Tyutin, Self-adjoint differential operators associated with self-adjoint differential expressions,, preprint, (). Google Scholar

[56]

J. Weidmann, "Linear Operators in Hilbert Spaces,", Springer-Verlag, (1980). Google Scholar

[57]

M. A. Walton, Wigner functions, contact interactions, and matching,, Ann. Phys., 322 (2007), 2233. Google Scholar

[58]

M. W. Wong, "Weyl Transforms,", Springer-Verlag, (1998). Google Scholar

show all references

References:
[1]

N. Akhiezer and I. Glazman, "Theory of Linear Operators in Hilbert Space,", Pitman, (1981). Google Scholar

[2]

S. Albeverio, F. Gesztesy, R. Högh-Krohn and H. Holden, "Solvable Models in Quantum Mechanics,", 2$^{nd}$ edition, (2005). Google Scholar

[3]

G. A. Baker, Formulation of quantum mechanics based on the quasi-probability distribution induced on phase space,, Phys. Rev., 109 (1958), 2198. Google Scholar

[4]

F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. F. Sternheimer, Deformation theory and quantization, I and II,, Ann. Phys., 111 (1978), 61. Google Scholar

[5]

F. A. Berezin and L. D. Fadeev, Remark on the Schröinger equation with singular potential,, Dokl. Akad. Nauk. SSSR, 137 (1961), 1011. Google Scholar

[6]

J. Behrndt and M. Langer, Boundary value problems for elliptic partial differential operators on bounded domains,, J. Funct. Anal., 243 (2007), 536. Google Scholar

[7]

M. S. Birman and M. Z. Solomjak, "Spectral Theory of Self-Adjoint Operators in Hilbert Spaces,", Reidel, (1987). Google Scholar

[8]

Ph. Blanchard, R. Figari and A. Mantile, Point interaction Hamiltonians in bounded domains,, J. Math. Phys., 48 (2007). Google Scholar

[9]

J. Blank, P. Exner and M. Havlíček, "Hilbert Space Operators in Quantum Physics,'', 2$^{nd}$ edition, (2008). Google Scholar

[10]

G. Bonneau, J. Faraut and G. Valent, Self-adjoint extensions of operators and the teaching of quantum mechanics,, Am. J. Phys., 69 (2001), 322. Google Scholar

[11]

A. Bracken, G. Cassinelli and J. Wood, Quantum symmetries and the Weyl-Wigner product of group representations,, preprint, (). Google Scholar

[12]

B. M. Brown, M. Marletta, S. Naboko and I. G. Wood, Boundary triplets and M-functions for non-selfadjoint operators, with applications to elliptic PDEs and block operator matrices,, J. Lond. Math. Soc., 77 (2008), 700. Google Scholar

[13]

B. M. Brown, G. Grubb and I. G. Wood, M-functions for closed extensions of adjoint pairs of operators with applications to elliptic boundary problems,, Math. Nachr., 282 (2009), 314. Google Scholar

[14]

C. Cacciapuoti, R. Carlone and R. Figari, Spin dependent point potentials in one and three dimensions,, J. Phys. A: Math. Gen., 40 (2007), 249. Google Scholar

[15]

J. W. Calkin, Abstract symmetric boundary conditions,, Trans. Am. Math. Soc., 45 (1939), 369. Google Scholar

[16]

A. Connes, "Noncommutative Geometry,", Academic Press, (1994). Google Scholar

[17]

C. R. de Oliveira, "Intermediate Spectral Theory and Quantum Dynamics,", Birkh\, (2009). Google Scholar

[18]

N. C. Dias and J. N. Prata, Wigner functions with boundaries,, J. Math. Phys., 43 (2002), 4602. Google Scholar

[19]

N. C. Dias, A. Posilicano and J. N. Prata, in, in preparation., (). Google Scholar

[20]

N. C. Dias and J. N. Prata, Admissible states in quantum phase space,, Ann. Phys., 313 (2004), 110. Google Scholar

[21]

N. C. Dias and J. N. Prata, Comment on "On infinite walls in deformation quantization",, Ann. Phys., 321 (2006), 495. Google Scholar

[22]

D. Dubin, M. Hennings and T. Smith, "Mathematical Aspects of Weyl Quantization,", World Scientific, (2000). Google Scholar

[23]

W. Faris, "Self-Adjoint Operators,", Lecture Notes in Mathematics {\bf 433}, 433 (1975). Google Scholar

[24]

D. Fairlie, The formulation of quantum mechanics in terms of phase space functions,, Proc. Camb. Phil. Soc., 60 (1964), 581. Google Scholar

[25]

B. Fedosov, A simple geometric construction of deformation quantization,, J. Diff. Geom., 40 (1994), 213. Google Scholar

[26]

R. Gambini and R. A. Porto, Relational time in generally covariant quantum systems: four models,, Phys. Rev., D 63 (2001). Google Scholar

[27]

P. Garbaczewski and W. Karwowski, Impenetrable barriers and canonical quantization,, Am. J. Phys., 72 (2004), 924. Google Scholar

[28]

F. Gesztesy and M. Mitrea, Robin-to-Robin maps and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains, in "Modern Analysis and Applications. The Mark Krein Centenary Conference. Vol. 2: Differential Operators and Mechanics'', (eds. V. Adamyan et al.), (2009), 81. Google Scholar

[29]

F. Gesztesy and M. Mitrea, Generalized Robin boundary conditions, Robin-to-Dirichlet maps, and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains,, in, 79 (2008), 105. Google Scholar

[30]

V. I. Gorbachuk and M. L. Gorbachuk, "Boundary Value Problems for Operator Differential Equations,", Kluver, (1991). Google Scholar

[31]

M. de Gosson and F. Luef, A new approach to the $\star$-genvalue equation,, Lett. Math. Phys., 85 (2008), 173. Google Scholar

[32]

G. Grubb, A characterization of the non local boundary value problems associated with an elliptic operator,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1968), 425. Google Scholar

[33]

G. Grubb, Krein resolvent formulas for elliptic boundary problems in nonsmooth domains,, Rend. Sem. Mat. Univ. Pol. Torino, 66 (2008), 271. Google Scholar

[34]

C. Isham, Topological and global aspects of quantum theory,, in, (1984), 1059. Google Scholar

[35]

M. Kontsevich, Deformation quantization of Poisson manifolds I,, Lett. Math. Phys., 66 (2003), 157. Google Scholar

[36]

M. G. Kre\u\i n, The theory of self-adjoint extensions of half-bounded Hermitean operators and their applications I,, Mat. Sbornik N.S., 20 (1947), 431. Google Scholar

[37]

M. G. Kreĭn, The theory of self-adjoint extensions of half-bounded Hermitean operators and their applications II,, Mat. Sbornik N.S., 21 (1947), 365. Google Scholar

[38]

K. Kowalski, K. Podlaski and J. Rembieliński, Quantum mechanics of a free particle on a plane with an extracted point,, Phys. Rev. A, 66 (2002), 032118. Google Scholar

[39]

S. Kryukov and M. A. Walton, On infinite walls in deformation quantization,, Ann. Phys., 317 (2005), 474. Google Scholar

[40]

J. L. Lions and E. Magenes, Problèmes aux limites non homogènes II,, Ann. Institut Fourier, 11 (1961), 137. Google Scholar

[41]

J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications I,", Springer-Verlag, (1972). Google Scholar

[42]

J. Madore, "An Introduction to Noncommutative Differential Geometry and its Physical Applications,", 2$^{nd}$ edition, (2000). Google Scholar

[43]

M. A. Naimark, "Theory of Linear Differential Operators,", Frederick Ungar Publishing Co., (1967). Google Scholar

[44]

J. von Neumann, Allgemeine eigenwerttheorie Hermitscher funktionaloperatoren,, Math. Ann., 102 (1929), 49. Google Scholar

[45]

J. von Neumann, "Mathematische Grundlagen der Quantenmechanik,", Springer-Verlag, (1932). Google Scholar

[46]

A. Pinzul and A. Stern, Absence of the holographic principle in noncommutative Chern-Simons theory,, J. High Energy Phys., 0111 (2001). Google Scholar

[47]

A. Posilicano, A Krein-like formula for singular perturbations of self-adjoint operators and applications,, J. Funct. Anal., 183 (2001), 109. Google Scholar

[48]

A. Posilicano, Self-adjoint extensions by additive perturbations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2 (2003), 1. Google Scholar

[49]

A. Posilicano, Self-adjoint extensions of restrictions,, Oper. Matrices, 2 (2008), 483. Google Scholar

[50]

A. Posilicano and L. Raimondi, Krein's resolvent formula for self-adjoint extensions of symmetric second order elliptic differential operators,, J. Phys. A: Math. Theor., 42 (2009). Google Scholar

[51]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics. Vol. II: Fourier Analysis, Self-Adjointness,", Academic Press, (1975). Google Scholar

[52]

V. Ryzhov, A general boundary value problem and its Weyl function,, Opuscula Math., 27 (2007), 305. Google Scholar

[53]

N. Seiberg and E. Witten, String theory and noncommutative geometry,, J. High Energy Phys., 9909 (1999). Google Scholar

[54]

M. L. Višik, On general boundary problems for elliptic differential equations,, Trudy Mosc. Mat. Obsv., 1 (1952), 186. Google Scholar

[55]

B. Voronov, D. Gitman and I. Tyutin, Self-adjoint differential operators associated with self-adjoint differential expressions,, preprint, (). Google Scholar

[56]

J. Weidmann, "Linear Operators in Hilbert Spaces,", Springer-Verlag, (1980). Google Scholar

[57]

M. A. Walton, Wigner functions, contact interactions, and matching,, Ann. Phys., 322 (2007), 2233. Google Scholar

[58]

M. W. Wong, "Weyl Transforms,", Springer-Verlag, (1998). Google Scholar

[1]

Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Computational networks and systems-homogenization of self-adjoint differential operators in variational form on periodic networks and micro-architectured systems. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 139-169. doi: 10.3934/naco.2017010

[2]

Abdallah El Hamidi, Aziz Hamdouni, Marwan Saleh. On eigenelements sensitivity for compact self-adjoint operators and applications. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 445-455. doi: 10.3934/dcdss.2016006

[3]

Dachun Yang, Sibei Yang. Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated to non-negative self-adjoint operators satisfying Gaussian estimates. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2135-2160. doi: 10.3934/cpaa.2016031

[4]

Wen Deng. Resolvent estimates for a two-dimensional non-self-adjoint operator. Communications on Pure & Applied Analysis, 2013, 12 (1) : 547-596. doi: 10.3934/cpaa.2013.12.547

[5]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[6]

Setsuro Fujiié, Jens Wittsten. Quantization conditions of eigenvalues for semiclassical Zakharov-Shabat systems on the circle. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3851-3873. doi: 10.3934/dcds.2018167

[7]

Sebastián Donoso, Wenbo Sun. Dynamical cubes and a criteria for systems having product extensions. Journal of Modern Dynamics, 2015, 9: 365-405. doi: 10.3934/jmd.2015.9.365

[8]

David Bourne, Howard Elman, John E. Osborn. A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction Part II: Analysis of Convergence. Communications on Pure & Applied Analysis, 2009, 8 (1) : 143-160. doi: 10.3934/cpaa.2009.8.143

[9]

Ruikuan Liu, Tian Ma, Shouhong Wang, Jiayan Yang. Thermodynamical potentials of classical and quantum systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1411-1448. doi: 10.3934/dcdsb.2018214

[10]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

[11]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations & Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59

[12]

Krzysztof Fujarewicz, Marek Kimmel, Andrzej Swierniak. On Fitting Of Mathematical Models Of Cell Signaling Pathways Using Adjoint Systems. Mathematical Biosciences & Engineering, 2005, 2 (3) : 527-534. doi: 10.3934/mbe.2005.2.527

[13]

Ian Melbourne, V. Niţicâ, Andrei Török. A note about stable transitivity of noncompact extensions of hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 355-363. doi: 10.3934/dcds.2006.14.355

[14]

Stuart S. Antman, David Bourne. A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction Part I: Formulation, Analysis, and Computations. Communications on Pure & Applied Analysis, 2009, 8 (1) : 123-142. doi: 10.3934/cpaa.2009.8.123

[15]

Silviu-Iulian Niculescu, Peter S. Kim, Keqin Gu, Peter P. Lee, Doron Levy. Stability crossing boundaries of delay systems modeling immune dynamics in leukemia. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 129-156. doi: 10.3934/dcdsb.2010.13.129

[16]

Roberto Alicandro, Andrea Braides, Marco Cicalese. Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint. Networks & Heterogeneous Media, 2006, 1 (1) : 85-107. doi: 10.3934/nhm.2006.1.85

[17]

Viorel Niţică. Stable transitivity for extensions of hyperbolic systems by semidirect products of compact and nilpotent Lie groups. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1197-1204. doi: 10.3934/dcds.2011.29.1197

[18]

Ian Melbourne, Dalia Terhesiu. Mixing properties for toral extensions of slowly mixing dynamical systems with finite and infinite measure. Journal of Modern Dynamics, 2018, 12: 285-313. doi: 10.3934/jmd.2018011

[19]

Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845

[20]

Gong Chen, Peter J. Olver. Numerical simulation of nonlinear dispersive quantization. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 991-1008. doi: 10.3934/dcds.2014.34.991

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (6)

[Back to Top]