Citation: |
[1] |
J. G. Bao, Fully nonlinear elliptic equations on general domains, Canad. J. Math., 54 (2002), 1121-1141.doi: 10.4153/CJM-2002-042-9. |
[2] |
Luis A. Caffarelli and X. Cabré, "Fully Nonlinear Elliptic Equations," Colloquium Publications, 43, American Mathematical Society, Providence, RI, 1995. |
[3] |
X. Cabré and Luis A. Caffarelli, Regularity for viscosity solutions of fully nonlinear equations $F(D^2u)=0$, Topol. Methods Nonlinear Anal., 6 (1995), 31-48. |
[4] |
L. Caffarelli and Y. Y. Li, An extension to a theorem of Jörgens, Calabi, and Pogorelov, Comm. Pure Appl. Math., 56 (2003), 549-583.doi: 10.1002/cpa.10067. |
[5] |
L. M. Dai and J. G. Bao, Entire solutions with asymptotic behavior of Hessian equations, Adv. Math. (China), in press. |
[6] |
Lawrence C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math., 35 (1982), 333-363.doi: 10.1002/cpa.3160350303. |
[7] |
D. Gilbarg and Neil S. Trudinger, "Elliptic Partial Differential Equations of Second Order," 2nd edition, Springer-Verlag, Berlin, 1983. |
[8] |
H. Ishii, On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDEs, Comm. Pure Appl. Math., 42 (1989), 15-45.doi: 10.1002/cpa.3160420103. |
[9] |
N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain. (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 47 (1983), 75-108. |
[10] |
O. Savin, Entire solutions to a class of fully nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (2008), 369-405. |
[11] |
B. Sirakov, Solvability of uniformly elliptic fully nonlinear PDE, Arch. Ration. Mech. Anal., 195 (2010), 579-607.doi: 10.1007/s00205-009-0218-9. |