• Previous Article
    Theory of the NS-$\overline{\omega}$ model: A complement to the NS-$\alpha$ model
  • CPAA Home
  • This Issue
  • Next Article
    A unified treatment using critical point methods of the existence of multiple solutions for superlinear and sublinear Neumann problems
November  2011, 10(6): 1779-1790. doi: 10.3934/cpaa.2011.10.1779

Even solutions of the Toda system with prescribed asymptotic behavior

1. 

Departamento de Ingeniería Matemática and CMM, (UMI 2807 CNRS), Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile

Received  May 2010 Revised  March 2011 Published  May 2011

Every solution of the Toda system, describing the behavior of a finite number of mass points on the line, each one interacting with its neighbors, is asymptotically linear at infinity. We show the existence and uniqueness of even solution with suitable prescribed asymptotic behavior, by analyzing a system of algebraic equations derived from the relation between the slopes and the intercepts of the asymptotic lines.
Citation: Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779
References:
[1]

M. Del Pino, M. Kowalczyk, F. Pacard and J. Wei, Multiple-end solutions to the Allen-Cahn equation in $R^2$,, J. Funct. Anal., 258 (2010), 458. doi: 10.1016/j.jfa.2009.04.020.

[2]

M. Del Pino, M. Kowalczyk, F. Pacard and J. Wei, The Toda system and multiple-end solutions of autonomous planar elliptic problems,, Adv. Math., 224 (2010), 1462. doi: 10.1016/j.aim.2010.01.003.

[3]

M. Del Pino, M. Kowalczyk and J. Wei, The Toda system and clustering interfaces in the Allen-Cahn equation,, Arch. Ration. Mech. Anal., 190 (2008), 141. doi: 10.1007/s00205-008-0143-3.

[4]

B. Kostant, The solution to a generalized Toda lattice and representation theory,, Adv. Math., 34 (1979), 195. doi: 10.1016/0001-8708(79)90057-4.

[5]

J. Moser, Finitely many mass points on the line under the influence of an exponential potential-an integrable system,, in, (1975), 467. doi: 10.1007/3-540-07171-7_12.

show all references

References:
[1]

M. Del Pino, M. Kowalczyk, F. Pacard and J. Wei, Multiple-end solutions to the Allen-Cahn equation in $R^2$,, J. Funct. Anal., 258 (2010), 458. doi: 10.1016/j.jfa.2009.04.020.

[2]

M. Del Pino, M. Kowalczyk, F. Pacard and J. Wei, The Toda system and multiple-end solutions of autonomous planar elliptic problems,, Adv. Math., 224 (2010), 1462. doi: 10.1016/j.aim.2010.01.003.

[3]

M. Del Pino, M. Kowalczyk and J. Wei, The Toda system and clustering interfaces in the Allen-Cahn equation,, Arch. Ration. Mech. Anal., 190 (2008), 141. doi: 10.1007/s00205-008-0143-3.

[4]

B. Kostant, The solution to a generalized Toda lattice and representation theory,, Adv. Math., 34 (1979), 195. doi: 10.1016/0001-8708(79)90057-4.

[5]

J. Moser, Finitely many mass points on the line under the influence of an exponential potential-an integrable system,, in, (1975), 467. doi: 10.1007/3-540-07171-7_12.

[1]

Belkacem Said-Houari, Radouane Rahali. Asymptotic behavior of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of type III. Evolution Equations & Control Theory, 2013, 2 (2) : 423-440. doi: 10.3934/eect.2013.2.423

[2]

Bernard Brighi, S. Guesmia. Asymptotic behavior of solution of hyperbolic problems on a cylindrical domain. Conference Publications, 2007, 2007 (Special) : 160-169. doi: 10.3934/proc.2007.2007.160

[3]

Güher Çamliyurt, Igor Kukavica. A local asymptotic expansion for a solution of the Stokes system. Evolution Equations & Control Theory, 2016, 5 (4) : 647-659. doi: 10.3934/eect.2016023

[4]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[5]

Sergio Frigeri. Asymptotic behavior of a hyperbolic system arising in ferroelectricity. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1393-1414. doi: 10.3934/cpaa.2008.7.1393

[6]

Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689

[7]

Yongqin Liu, Shuichi Kawashima. Asymptotic behavior of solutions to a model system of a radiating gas. Communications on Pure & Applied Analysis, 2011, 10 (1) : 209-223. doi: 10.3934/cpaa.2011.10.209

[8]

Ling Mi. Asymptotic behavior for the unique positive solution to a singular elliptic problem. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1053-1072. doi: 10.3934/cpaa.2015.14.1053

[9]

Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019

[10]

Tingting Liu, Qiaozhen Ma. Time-dependent asymptotic behavior of the solution for plate equations with linear memory. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4595-4616. doi: 10.3934/dcdsb.2018178

[11]

Manuel del Pino, Michal Kowalczyk, Juncheng Wei. The Jacobi-Toda system and foliated interfaces. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 975-1006. doi: 10.3934/dcds.2010.28.975

[12]

Georgia Karali, Takashi Suzuki, Yoshio Yamada. Global-in-time behavior of the solution to a Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2885-2900. doi: 10.3934/dcds.2013.33.2885

[13]

Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121

[14]

Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure & Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435

[15]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[16]

Yuanyuan Liu, Youshan Tao. Asymptotic behavior in a chemotaxis-growth system with nonlinear production of signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 465-475. doi: 10.3934/dcdsb.2017021

[17]

Guofu Lu. Nonexistence and short time asymptotic behavior of source-type solution for porous medium equation with convection in one-dimension. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1567-1586. doi: 10.3934/dcdsb.2016011

[18]

Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009

[19]

Weiwei Ao. Sharp estimates for fully bubbling solutions of $B_2$ Toda system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1759-1788. doi: 10.3934/dcds.2016.36.1759

[20]

Weike Wang, Xin Xu. Large time behavior of solution for the full compressible navier-stokes-maxwell system. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2283-2313. doi: 10.3934/cpaa.2015.14.2283

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]