Citation: |
[1] |
M. Del Pino, M. Kowalczyk, F. Pacard and J. Wei, Multiple-end solutions to the Allen-Cahn equation in $R^2$, J. Funct. Anal., 258 (2010), 458-503.doi: 10.1016/j.jfa.2009.04.020. |
[2] |
M. Del Pino, M. Kowalczyk, F. Pacard and J. Wei, The Toda system and multiple-end solutions of autonomous planar elliptic problems, Adv. Math., 224 (2010), 1462-1516. arXiv:0710.0640.doi: 10.1016/j.aim.2010.01.003. |
[3] |
M. Del Pino, M. Kowalczyk and J. Wei, The Toda system and clustering interfaces in the Allen-Cahn equation, Arch. Ration. Mech. Anal., 190 (2008), 141-187.doi: 10.1007/s00205-008-0143-3. |
[4] |
B. Kostant, The solution to a generalized Toda lattice and representation theory, Adv. Math., 34 (1979), 195-338.doi: 10.1016/0001-8708(79)90057-4. |
[5] |
J. Moser, Finitely many mass points on the line under the influence of an exponential potential-an integrable system, in "Dynamical Systems, Theory and Applications," Lecture Notes in Phys., Vol. 38, Springer, (1975), 467-497.doi: 10.1007/3-540-07171-7_12. |