-
Previous Article
A unified treatment using critical point methods of the existence of multiple solutions for superlinear and sublinear Neumann problems
- CPAA Home
- This Issue
-
Next Article
Theory of the NS-$\overline{\omega}$ model: A complement to the NS-$\alpha$ model
Even solutions of the Toda system with prescribed asymptotic behavior
1. | Departamento de Ingeniería Matemática and CMM, (UMI 2807 CNRS), Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile |
References:
[1] |
M. Del Pino, M. Kowalczyk, F. Pacard and J. Wei, Multiple-end solutions to the Allen-Cahn equation in $R^2$, J. Funct. Anal., 258 (2010), 458-503.
doi: 10.1016/j.jfa.2009.04.020. |
[2] |
M. Del Pino, M. Kowalczyk, F. Pacard and J. Wei, The Toda system and multiple-end solutions of autonomous planar elliptic problems, Adv. Math., 224 (2010), 1462-1516. arXiv:0710.0640.
doi: 10.1016/j.aim.2010.01.003. |
[3] |
M. Del Pino, M. Kowalczyk and J. Wei, The Toda system and clustering interfaces in the Allen-Cahn equation, Arch. Ration. Mech. Anal., 190 (2008), 141-187.
doi: 10.1007/s00205-008-0143-3. |
[4] |
B. Kostant, The solution to a generalized Toda lattice and representation theory, Adv. Math., 34 (1979), 195-338.
doi: 10.1016/0001-8708(79)90057-4. |
[5] |
J. Moser, Finitely many mass points on the line under the influence of an exponential potential-an integrable system, in "Dynamical Systems, Theory and Applications," Lecture Notes in Phys., Vol. 38, Springer, (1975), 467-497.
doi: 10.1007/3-540-07171-7_12. |
show all references
References:
[1] |
M. Del Pino, M. Kowalczyk, F. Pacard and J. Wei, Multiple-end solutions to the Allen-Cahn equation in $R^2$, J. Funct. Anal., 258 (2010), 458-503.
doi: 10.1016/j.jfa.2009.04.020. |
[2] |
M. Del Pino, M. Kowalczyk, F. Pacard and J. Wei, The Toda system and multiple-end solutions of autonomous planar elliptic problems, Adv. Math., 224 (2010), 1462-1516. arXiv:0710.0640.
doi: 10.1016/j.aim.2010.01.003. |
[3] |
M. Del Pino, M. Kowalczyk and J. Wei, The Toda system and clustering interfaces in the Allen-Cahn equation, Arch. Ration. Mech. Anal., 190 (2008), 141-187.
doi: 10.1007/s00205-008-0143-3. |
[4] |
B. Kostant, The solution to a generalized Toda lattice and representation theory, Adv. Math., 34 (1979), 195-338.
doi: 10.1016/0001-8708(79)90057-4. |
[5] |
J. Moser, Finitely many mass points on the line under the influence of an exponential potential-an integrable system, in "Dynamical Systems, Theory and Applications," Lecture Notes in Phys., Vol. 38, Springer, (1975), 467-497.
doi: 10.1007/3-540-07171-7_12. |
[1] |
Yong Liu, Jing Tian, Xuelin Yong. On the even solutions of the Toda system: A degree argument approach. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1895-1916. doi: 10.3934/cpaa.2021075 |
[2] |
Belkacem Said-Houari, Radouane Rahali. Asymptotic behavior of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of type III. Evolution Equations and Control Theory, 2013, 2 (2) : 423-440. doi: 10.3934/eect.2013.2.423 |
[3] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[4] |
Bernard Brighi, S. Guesmia. Asymptotic behavior of solution of hyperbolic problems on a cylindrical domain. Conference Publications, 2007, 2007 (Special) : 160-169. doi: 10.3934/proc.2007.2007.160 |
[5] |
Güher Çamliyurt, Igor Kukavica. A local asymptotic expansion for a solution of the Stokes system. Evolution Equations and Control Theory, 2016, 5 (4) : 647-659. doi: 10.3934/eect.2016023 |
[6] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure and Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[7] |
Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure and Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689 |
[8] |
Sergio Frigeri. Asymptotic behavior of a hyperbolic system arising in ferroelectricity. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1393-1414. doi: 10.3934/cpaa.2008.7.1393 |
[9] |
Yongqin Liu, Shuichi Kawashima. Asymptotic behavior of solutions to a model system of a radiating gas. Communications on Pure and Applied Analysis, 2011, 10 (1) : 209-223. doi: 10.3934/cpaa.2011.10.209 |
[10] |
Ling Mi. Asymptotic behavior for the unique positive solution to a singular elliptic problem. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1053-1072. doi: 10.3934/cpaa.2015.14.1053 |
[11] |
Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019 |
[12] |
Tingting Liu, Qiaozhen Ma. Time-dependent asymptotic behavior of the solution for plate equations with linear memory. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4595-4616. doi: 10.3934/dcdsb.2018178 |
[13] |
Manuel del Pino, Michal Kowalczyk, Juncheng Wei. The Jacobi-Toda system and foliated interfaces. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 975-1006. doi: 10.3934/dcds.2010.28.975 |
[14] |
Linlin Dou. Singular solutions of Toda system in high dimensions. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3119-3142. doi: 10.3934/dcds.2022011 |
[15] |
Jie Zhao. Large time behavior of solution to quasilinear chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1737-1755. doi: 10.3934/dcds.2020091 |
[16] |
Georgia Karali, Takashi Suzuki, Yoshio Yamada. Global-in-time behavior of the solution to a Gierer-Meinhardt system. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2885-2900. doi: 10.3934/dcds.2013.33.2885 |
[17] |
Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121 |
[18] |
Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure and Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435 |
[19] |
Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic and Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129 |
[20] |
Alain Miranville, Ramon Quintanilla, Wafa Saoud. Asymptotic behavior of a Cahn-Hilliard/Allen-Cahn system with temperature. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2257-2288. doi: 10.3934/cpaa.2020099 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]