January  2011, 10(1): 179-192. doi: 10.3934/cpaa.2011.10.179

Boundedness in a class of duffing equations with oscillating potentials via the twist theorem

1. 

Yiwu Industrial and Commercial College, Yiwu Zhejiang 322000, China

Received  November 2009 Revised  August 2010 Published  November 2010

In this paper, we prove the boundedness of all solutions and the existence of periodic and quasi-periodic solutions for the equation $\ddot{x}+x^{2n+1}+\sum_{j=0}^l x^j p_j (x,t)=0$, where $p_j (x,t)$ are smooth 1-periodic functions in both $x$ and $t$ with $n\geq 1, 0 \leq l \leq 2 n$.
Citation: Huiping Jin. Boundedness in a class of duffing equations with oscillating potentials via the twist theorem. Communications on Pure and Applied Analysis, 2011, 10 (1) : 179-192. doi: 10.3934/cpaa.2011.10.179
References:
[1]

R. Dieckerhoff and E. Zehnder, Boundedness of solutions via the twist theorem, Ann. Scuola Norm. Sup. Pisa, 14 (1987), 79-95.

[2]

T. Kupper and J. You, Existence of quasiperiodic solutions and Littlewood's boundedness problem of Duffing equations with subquadratic potentials, Nonlinear Analysis, 35 (1999), 549-559. doi: doi:10.1016/S0362-546X(97)00709-8.

[3]

S. Laederich and M. Levi, Invariant curves and time-dependent potentials, Ergod. Th. and Dynam. Sys., 11 (1991), 365-378. doi: doi:10.1017/S0143385700006192.

[4]

M. Levi, Quasi-periodic motions in superquadratic periodic potentials, Comm. Math. Phys., 143 (1991), 43-83. doi: doi:10.1007/BF02100285.

[5]

M. Levi, KAM theory for particles in periodic potentials, Ergod. Th. and Dynam. Sys., 10 (1990), 777-785. doi: doi:10.1017/S0143385700005897.

[6]

M. Levi, On Littlewood's counterexample on unbounded motion in superquadratic potentials, Dynamics Reported I (ed. C.K.R.T. Jones, U. Kirchgraber and H. O. Walther, Springer, Berlin, 1992), 113-124.

[7]

B. Liu, Boundedness for solutions of nonlinear Hill's equations with periodic forcing terms via Moser's twist theorem, J. Differential Equations, 79 (1989), 304-315. doi: doi:10.1016/0022-0396(89)90105-8.

[8]

B. Liu, Boundedness of solutions of nonlinear periodic differential equations via Moser's twist theorem, Acta. Mathematica Sinca, New Series, 8 (1992), 91-98.

[9]

B. Liu, On Littlewood's boundedness problem for sublinear Duffing equations, Transactions of the American mathematical society, 353 (2001), 1567-1585. doi: doi:10.1090/S0002-9947-00-02770-7.

[10]

B. Liu, Boundedness in asymmetric oscillations, JMAA, 231 (1999), 355-373.

[11]

J. Littlewood, Unbounded solutions of $y''+g(y)=p(t)$, Journal London Math. Soc., 41 (1966), 491-496. doi: doi:10.1112/jlms/s1-41.1.491.

[12]

Y. Long, An unbounded solution of a superlinear Duffing's equation, Acta Mathematica in Sinica, 7 (1991), 360-369. doi: doi:10.1007/BF02594893.

[13]

G. Morris, A case of boundedness in Littlewood's problem on oscillatory differential equations, Bull. Austral. Math. Soc., 14 (1976), 71-93. doi: doi:10.1017/S0004972700024862.

[14]

J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss, Gottingen Math. -Phys., Kl. II (1962), 1-20.

[15]

R. Ortega, Asymmetric oscillators and twist mappings, J. London Math. Soc., 53 (1996), 325-342.

[16]

R. Ortega, Boundedness in a piecewise linear oscillator and a variant of the small twist theorem, Proceeding London Math. Soc., 79 (1999), 381-413. doi: doi:10.1112/S0024611599012034.

[17]

H. Rüssman, On the existence of invariant curves of twist mapping of an annulus, Lecture Notes in Math., 1007 (1981), 677-718.

[18]

Y. Wang and J. You, Boundedness of solutions in polynomial potentials with $C^2$ coefficients, ZAMP, 47 (1996), 943-952. doi: doi:10.1007/BF00920044.

[19]

J. You, Boundedness for solutions of superlinear Duffing equations via the twist theorem, Sci. China Ser. A, 35 (1992), 399-412.

[20]

X. Yuan, Invariant tori of Duffing-type equations, J. Differential Equations, 142 (1998), 231-262. doi: doi:10.1006/jdeq.1997.3356.

[21]

X. Yuan, Lagrange stability for Duffing-type equations, J. Differential Equations, 160 (2000), 94-117. doi: doi:10.1006/jdeq.1999.3663.

show all references

References:
[1]

R. Dieckerhoff and E. Zehnder, Boundedness of solutions via the twist theorem, Ann. Scuola Norm. Sup. Pisa, 14 (1987), 79-95.

[2]

T. Kupper and J. You, Existence of quasiperiodic solutions and Littlewood's boundedness problem of Duffing equations with subquadratic potentials, Nonlinear Analysis, 35 (1999), 549-559. doi: doi:10.1016/S0362-546X(97)00709-8.

[3]

S. Laederich and M. Levi, Invariant curves and time-dependent potentials, Ergod. Th. and Dynam. Sys., 11 (1991), 365-378. doi: doi:10.1017/S0143385700006192.

[4]

M. Levi, Quasi-periodic motions in superquadratic periodic potentials, Comm. Math. Phys., 143 (1991), 43-83. doi: doi:10.1007/BF02100285.

[5]

M. Levi, KAM theory for particles in periodic potentials, Ergod. Th. and Dynam. Sys., 10 (1990), 777-785. doi: doi:10.1017/S0143385700005897.

[6]

M. Levi, On Littlewood's counterexample on unbounded motion in superquadratic potentials, Dynamics Reported I (ed. C.K.R.T. Jones, U. Kirchgraber and H. O. Walther, Springer, Berlin, 1992), 113-124.

[7]

B. Liu, Boundedness for solutions of nonlinear Hill's equations with periodic forcing terms via Moser's twist theorem, J. Differential Equations, 79 (1989), 304-315. doi: doi:10.1016/0022-0396(89)90105-8.

[8]

B. Liu, Boundedness of solutions of nonlinear periodic differential equations via Moser's twist theorem, Acta. Mathematica Sinca, New Series, 8 (1992), 91-98.

[9]

B. Liu, On Littlewood's boundedness problem for sublinear Duffing equations, Transactions of the American mathematical society, 353 (2001), 1567-1585. doi: doi:10.1090/S0002-9947-00-02770-7.

[10]

B. Liu, Boundedness in asymmetric oscillations, JMAA, 231 (1999), 355-373.

[11]

J. Littlewood, Unbounded solutions of $y''+g(y)=p(t)$, Journal London Math. Soc., 41 (1966), 491-496. doi: doi:10.1112/jlms/s1-41.1.491.

[12]

Y. Long, An unbounded solution of a superlinear Duffing's equation, Acta Mathematica in Sinica, 7 (1991), 360-369. doi: doi:10.1007/BF02594893.

[13]

G. Morris, A case of boundedness in Littlewood's problem on oscillatory differential equations, Bull. Austral. Math. Soc., 14 (1976), 71-93. doi: doi:10.1017/S0004972700024862.

[14]

J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss, Gottingen Math. -Phys., Kl. II (1962), 1-20.

[15]

R. Ortega, Asymmetric oscillators and twist mappings, J. London Math. Soc., 53 (1996), 325-342.

[16]

R. Ortega, Boundedness in a piecewise linear oscillator and a variant of the small twist theorem, Proceeding London Math. Soc., 79 (1999), 381-413. doi: doi:10.1112/S0024611599012034.

[17]

H. Rüssman, On the existence of invariant curves of twist mapping of an annulus, Lecture Notes in Math., 1007 (1981), 677-718.

[18]

Y. Wang and J. You, Boundedness of solutions in polynomial potentials with $C^2$ coefficients, ZAMP, 47 (1996), 943-952. doi: doi:10.1007/BF00920044.

[19]

J. You, Boundedness for solutions of superlinear Duffing equations via the twist theorem, Sci. China Ser. A, 35 (1992), 399-412.

[20]

X. Yuan, Invariant tori of Duffing-type equations, J. Differential Equations, 142 (1998), 231-262. doi: doi:10.1006/jdeq.1997.3356.

[21]

X. Yuan, Lagrange stability for Duffing-type equations, J. Differential Equations, 160 (2000), 94-117. doi: doi:10.1006/jdeq.1999.3663.

[1]

Yanmin Niu, Xiong Li. An application of Moser's twist theorem to superlinear impulsive differential equations. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 431-445. doi: 10.3934/dcds.2019017

[2]

Florian Wagener. A parametrised version of Moser's modifying terms theorem. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 719-768. doi: 10.3934/dcdss.2010.3.719

[3]

Xuefeng Zhao, Yong Li. A Moser theorem for multiscale mappings. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022037

[4]

Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022045

[5]

Daxiong Piao, Xiang Sun. Boundedness of solutions for a class of impact oscillators with time-denpendent polynomial potentials. Communications on Pure and Applied Analysis, 2014, 13 (2) : 645-655. doi: 10.3934/cpaa.2014.13.645

[6]

Viktor L. Ginzburg and Basak Z. Gurel. The Generalized Weinstein--Moser Theorem. Electronic Research Announcements, 2007, 14: 20-29. doi: 10.3934/era.2007.14.20

[7]

Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067

[8]

Jacques Féjoz. On "Arnold's theorem" on the stability of the solar system. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3555-3565. doi: 10.3934/dcds.2013.33.3555

[9]

Renata Bunoiu, Radu Precup, Csaba Varga. Multiple positive standing wave solutions for schrödinger equations with oscillating state-dependent potentials. Communications on Pure and Applied Analysis, 2017, 16 (3) : 953-972. doi: 10.3934/cpaa.2017046

[10]

Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4531-4543. doi: 10.3934/dcds.2021047

[11]

V. Barbu. Periodic solutions to unbounded Hamiltonian system. Discrete and Continuous Dynamical Systems, 1995, 1 (2) : 277-283. doi: 10.3934/dcds.1995.1.277

[12]

Yūki Naito, Takasi Senba. Oscillating solutions to a parabolic-elliptic system related to a chemotaxis model. Conference Publications, 2011, 2011 (Special) : 1111-1118. doi: 10.3934/proc.2011.2011.1111

[13]

Alexander Sakhnovich. Dynamical canonical systems and their explicit solutions. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1679-1689. doi: 10.3934/dcds.2017069

[14]

Jian Zhang, Wen Zhang, Xiaoliang Xie. Existence and concentration of semiclassical solutions for Hamiltonian elliptic system. Communications on Pure and Applied Analysis, 2016, 15 (2) : 599-622. doi: 10.3934/cpaa.2016.15.599

[15]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[16]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[17]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[18]

Pan Zheng, Chunlai Mu, Xiaojun Song. On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1737-1757. doi: 10.3934/dcds.2016.36.1737

[19]

István Győri, Ferenc Hartung, Nahed A. Mohamady. Boundedness of positive solutions of a system of nonlinear delay differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 809-836. doi: 10.3934/dcdsb.2018044

[20]

Xiangdong Zhao. Global boundedness of classical solutions to a logistic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5095-5100. doi: 10.3934/dcdsb.2020334

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]