Citation: |
[1] |
P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong'' resonance at infinity, Nonlinear Anal., 7 (1983), 981-1012.doi: 10.1016/0362-546X(83)90115-3. |
[2] |
T. Bartsch, K.-C. Chang and Z.-Q. Wang, On the Morse indices of sign changing solutions of nonlinear elliptic problems, Math. Z., 233 (2000), 655-677.doi: 10.1007/s002090050492. |
[3] |
T. Bartsch and S. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, Nonlinear Anal., 28 (1997), 419-441.doi: doi:10.1016/0362-546X(95)00167-T. |
[4] |
H. Brezis and L. Nirenberg, $H^1$ versus $C^1$ local minimizers, C. R. Acad. Sci. Paris Ser. I Math., 317 (1993), 465-472. |
[5] |
K.-C. Chang, "Infinite-dimensional Morse Theory and Multiple Solution Problems, Progress in Nonlinear Differential Equations and Their Applications," 6. Birkhäuser Boston, Inc., Boston, MA, 1993. |
[6] |
K.-C. Chang, Morse theory in nonlinear analysis. Nonlinear functional analysis and applications to differential equations, (Trieste, 1997), pp. 60-101, World Sci. Publ., River Edge, NJ, 1998. |
[7] |
K.-C. Chang and M.-Y Jiang, Morse theory for indefinite nonlinear elliptic problems, Ann. Inst. H. Poincaré Anal. Non Linaire, 26 (2009), 139-158.doi: doi:10.1016/j.anihpc.2007.08.004. |
[8] |
D. Costa and C. Magalhaes, Variational elliptic problems which are nonquadratic at infinity, Nonlinear Anal., 23 (1994), 1401-1412.doi: doi:10.1016/0362-546X(94)90135-X. |
[9] |
D. G. de Figueiredo and J.-P. Gossez, Strict monotonicity of eigenvalues and unique continuation, Comm. Partial Differential Equations, 17 (1992), 339-346.doi: 10.1080/03605309208820844. |
[10] |
N. Dunford and J. Schwartz, "Linear Operators. I. General Theory," Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. |
[11] |
G. Fei, On periodic solutions of superquadratic Hamiltonian systems, Electron. J. Differential Equations, 8 (2002), 12 pp. (electronic). |
[12] |
J. P. Garcia Azorero, J. Peral Alonso and J. Manfredi, Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math., 2 (2000), 385-404.doi: 10.1142/S0219199700000190. |
[13] |
N. Garofalo and F.-H. Lin, Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure Appl. Math., 40 (1987), 347-366.doi: 10.1002/cpa.3160400305. |
[14] |
L. Gasiński and N. S. Papageorgiou, "Nonlinear Analysis," Chapman & Hall/CRC Press, Boca Raton, Fl, 2006. |
[15] |
Z. Guo and Z. Zhang, $W^{1, p}$ versus $C^1$ local minimizers and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl., 286 (2003), 32-50.doi: 10.1016/S0022-247X(03)00282-8. |
[16] |
S. Heikkila and V. Lakshmikantham, "Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations," Monographs and Textbooks in Pure and Applied Mathematics, 181, Marcel Dekker, Inc., New York, 1994. |
[17] |
R. Iannacci and M. Nkashama, Nonlinear boundary value problems at resonance, Nonlinear Anal., 11 (1987), 455-473.doi: doi:10.1016/0362-546X(87)90064-2. |
[18] |
R. Iannacci and M. Nkashama, Nonlinear two point boundary value problem without Landesman-Lazer condition, Proc. Amer. Math. Soc., 106 (1989), 943-952. |
[19] |
C. C. Kuo, On the solvability of a nonlinear second-order elliptic equation at resonance, Proc. Amer. Math. Soc., 124 (1996), 83-87. |
[20] |
C. Li, The existence of infinitely many solutions of a class of nonlinear elliptic equations with Neumann boundary condition for both resonance and oscillation problems, Nonlinear Anal., 54 (2003), 431-443.doi: doi:10.1016/S0362-546X(03)00100-7. |
[21] |
S. Li and Z. Wang, Mountain pass theorem in order intervals and multiple solutions for semilinear elliptic Dirichlet problems, J. Anal. Math., 81 (2000), 373-396.doi: 10.1007/BF02788997. |
[22] |
J. Q. Liu and S. Wu, Calculating critical groups of solutions for elliptic problem with jumping nonlinearity, Nonlinear Anal., 49 (2002), 779-797.doi: 10.1016/S0362-546X(01)00139-0. |
[23] |
J. Mawhin, Semicoercive monotone variational problems, Acad. Roy. Belg. Bull. Cl. Sci., 73 (1987), 118-130. |
[24] |
J. Mawhin, J. Ward and M. Willem, Variational methods and semilinear elliptic equations, Arch. Rational Mech. Anal., 95 (1986), 269-277.doi: 10.1007/BF00251362. |
[25] |
J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems," Applied Mathematical Sciences, 74, Springer-Verlag, New York, 1989. |
[26] |
D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, A degree theoretic approach for multiple solutions of constant sign for nonlinear elliptic equations, Manuscripta Math., 124 (2007), 507-531.doi: 10.1007/s00229-007-0127-x. |
[27] |
D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, A unified approach for multiple constant sign and nodal solutions, Adv. Differential Equations, 12 (2007), 1363-1392. |
[28] |
D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Nonlinear Neumann problems near resonance, Indiana Univ. Math. J., 58 (2009), 1257-1279.doi: 10.1512/iumj.2009.58.3565. |
[29] |
D. Motreanu and N. S. Papageorgiou, Existence and multiplicity of solutions for Neumann problems, J. Differential Equations, 232 (2007), 1-35.doi: 10.1016/j.jde.2006.09.008. |
[30] |
A. Qian, Existence of infinitely many nodal solutions for a superlinear Neumann boundary value problem, Bound. Value Probl., (2005), 329-335.doi: 10.1155/BVP.2005.329. |
[31] |
C. I. Tang and X. P. Wu, Existence and multiplicity for solutions of Neumann problem for semilinear elliptic equations, J. Math. Anal. Appl., 288 (2003), 660-670.doi: 10.1016/j.jmaa.2003.09.034. |
[32] |
J. Wang, J. Xu and F. Zhang, Homoclinic orbits for superlinear Hamiltonian systems without Ambrosetti-Rabinowitz growth condition, Discrete and Continuous Dynamical Systems, 27 (2010), 1241-1257.doi: 10.3934/dcds.2010.27.1241. |
[33] |
J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.doi: 10.1007/BF01449041. |