January  2011, 10(1): 193-207. doi: 10.3934/cpaa.2011.10.193

Asymptotic behavior for solutions of some integral equations

1. 

School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210097, China

2. 

Department of Mathematics, University of Colorado at Boulder, Boulder, CO 80309, United States

Received  January 2010 Revised  June 2010 Published  November 2010

In this paper we study the asymptotic behavior of the positive solutions of the following system of Euler-Lagrange equations of the Hardy-Littlewood-Sobolev type in $R^n$

$u(x) = \frac{1}{|x|^{\alpha}}\int_{R^n} \frac{v(y)^q}{|y|^{\beta}|x-y|^{\lambda}} dy $,

$ v(x) = \frac{1}{|x|^{\beta}}\int_{R^n} \frac{u(y)^p}{|y|^{\alpha}|x-y|^{\lambda}}dy. $

We obtain the growth rate of the solutions around the origin and the decay rate near infinity. Some new cases beyond the work of C. Li and J. Lim [17] are studied here. In particular, we remove some technical restrictions of [17], and thus complete the study of the asymptotic behavior of the solutions for non-negative $\alpha$ and $\beta$.

Citation: Yutian Lei, Chao Ma. Asymptotic behavior for solutions of some integral equations. Communications on Pure & Applied Analysis, 2011, 10 (1) : 193-207. doi: 10.3934/cpaa.2011.10.193
References:
[1]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, Comm. Pure Appl. Math., 42 (1989), 271. doi: doi:10.1002/cpa.3160420304.

[2]

W. Chen, C. Jin, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations,, Disc. & Cont. Dynamics Sys. S, (2005), 164.

[3]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: doi:10.1215/S0012-7094-91-06325-8.

[4]

W. Chen and C. Li, A priori estimates for prescribing scalar curvature equations,, Ann. of Math., 145 (1997), 547. doi: doi:10.2307/2951844.

[5]

W. Chen and C. Li, Regularity of solutions for a system of integral equations,, Comm. Pure and Appl. Anal., 4 (2005), 1.

[6]

W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality,, Proc. Amer. Math. Soc., 136 (2008), 955. doi: doi:10.1090/S0002-9939-07-09232-5.

[7]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Disc. & Cont. Dynamics Sys., 24 (2009), 1167.

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure and Appl., Math., 59 (2006), 330. doi: doi:10.1002/cpa.20116.

[9]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. in Partial Differential Equations, 30 (2005), 59. doi: doi:10.1081/PDE-200044445.

[10]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, Disc. & Cont. Dynamics Sys., 12 (2005), 347.

[11]

A. Chang and P. Yang, On uniqueness of an n-th order differential equation in conformal geometry,, Math. Res. Letters, 4 (1997), 1.

[12]

L. Fraenkel, "An Introduction to Maximum Principles and Symmetry in Elliptic Problems,", Cambridge Unversity Press, (2000).

[13]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, collected in the book, (1981).

[14]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661. doi: doi:10.1090/S0002-9939-05-08411-X.

[15]

C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. PDEs, 26 (2006), 447.

[16]

C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221.

[17]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Comm. Pure Appl. Anal., 6 (2007), 453. doi: doi:10.3934/cpaa.2007.6.453.

[18]

C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents, , SIAM J. Math. Anal., 40 (2008), 1049. doi: doi:10.1137/080712301.

[19]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349. doi: doi:10.2307/2007032.

[20]

E. Lieb and M. Loss, "Analysis,", 2nd edition, (2001).

[21]

C. Liu and S. Qiao, Symmetry and monotonicity for a system of integral equations,, Comm. Pure Appl. Anal., 8 (2009), 1925. doi: doi:10.3934/cpaa.2009.8.1925.

[22]

L. Ma and D. Chen, A Liouville type theorem for an integral system,, Comm. Pure Appl. Anal., 5 (2006), 855. doi: doi:10.3934/cpaa.2006.5.855.

[23]

B. Ou, A Remark on a singular integral equation,, Houston J. of Math., 25 (1999), 181.

[24]

J. Serrin, A symmetry problem in potential theory,, Arch. Rational Mech. Anal., 43 (1971), 304. doi: doi:10.1007/BF00250468.

[25]

E. M. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces,", Princeton University Press, (1971).

[26]

E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503.

[27]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207. doi: doi:10.1007/s002080050258.

show all references

References:
[1]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, Comm. Pure Appl. Math., 42 (1989), 271. doi: doi:10.1002/cpa.3160420304.

[2]

W. Chen, C. Jin, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations,, Disc. & Cont. Dynamics Sys. S, (2005), 164.

[3]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: doi:10.1215/S0012-7094-91-06325-8.

[4]

W. Chen and C. Li, A priori estimates for prescribing scalar curvature equations,, Ann. of Math., 145 (1997), 547. doi: doi:10.2307/2951844.

[5]

W. Chen and C. Li, Regularity of solutions for a system of integral equations,, Comm. Pure and Appl. Anal., 4 (2005), 1.

[6]

W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality,, Proc. Amer. Math. Soc., 136 (2008), 955. doi: doi:10.1090/S0002-9939-07-09232-5.

[7]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Disc. & Cont. Dynamics Sys., 24 (2009), 1167.

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure and Appl., Math., 59 (2006), 330. doi: doi:10.1002/cpa.20116.

[9]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. in Partial Differential Equations, 30 (2005), 59. doi: doi:10.1081/PDE-200044445.

[10]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, Disc. & Cont. Dynamics Sys., 12 (2005), 347.

[11]

A. Chang and P. Yang, On uniqueness of an n-th order differential equation in conformal geometry,, Math. Res. Letters, 4 (1997), 1.

[12]

L. Fraenkel, "An Introduction to Maximum Principles and Symmetry in Elliptic Problems,", Cambridge Unversity Press, (2000).

[13]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, collected in the book, (1981).

[14]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661. doi: doi:10.1090/S0002-9939-05-08411-X.

[15]

C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. PDEs, 26 (2006), 447.

[16]

C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221.

[17]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Comm. Pure Appl. Anal., 6 (2007), 453. doi: doi:10.3934/cpaa.2007.6.453.

[18]

C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents, , SIAM J. Math. Anal., 40 (2008), 1049. doi: doi:10.1137/080712301.

[19]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349. doi: doi:10.2307/2007032.

[20]

E. Lieb and M. Loss, "Analysis,", 2nd edition, (2001).

[21]

C. Liu and S. Qiao, Symmetry and monotonicity for a system of integral equations,, Comm. Pure Appl. Anal., 8 (2009), 1925. doi: doi:10.3934/cpaa.2009.8.1925.

[22]

L. Ma and D. Chen, A Liouville type theorem for an integral system,, Comm. Pure Appl. Anal., 5 (2006), 855. doi: doi:10.3934/cpaa.2006.5.855.

[23]

B. Ou, A Remark on a singular integral equation,, Houston J. of Math., 25 (1999), 181.

[24]

J. Serrin, A symmetry problem in potential theory,, Arch. Rational Mech. Anal., 43 (1971), 304. doi: doi:10.1007/BF00250468.

[25]

E. M. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces,", Princeton University Press, (1971).

[26]

E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503.

[27]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207. doi: doi:10.1007/s002080050258.

[1]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[2]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[3]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[4]

Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791

[5]

Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935

[6]

Ze Cheng, Genggeng Huang, Congming Li. On the Hardy-Littlewood-Sobolev type systems. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2059-2074. doi: 10.3934/cpaa.2016027

[7]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

[8]

Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653

[9]

Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057

[10]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[11]

Masato Hashizume, Chun-Hsiung Hsia, Gyeongha Hwang. On the Neumann problem of Hardy-Sobolev critical equations with the multiple singularities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 301-322. doi: 10.3934/cpaa.2019016

[12]

Jinhui Chen, Haitao Yang. A result on Hardy-Sobolev critical elliptic equations with boundary singularities. Communications on Pure & Applied Analysis, 2007, 6 (1) : 191-201. doi: 10.3934/cpaa.2007.6.191

[13]

Aleksandra Čižmešija, Iva Franjić, Josip Pečarić, Dora Pokaz. On a family of means generated by the Hardy-Littlewood maximal inequality. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 223-231. doi: 10.3934/naco.2012.2.223

[14]

José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138

[15]

Huyuan Chen, Feng Zhou. Isolated singularities for elliptic equations with hardy operator and source nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2945-2964. doi: 10.3934/dcds.2018126

[16]

Mingchun Wang, Jiankai Xu, Huoxiong Wu. On Positive solutions of integral equations with the weighted Bessel potentials. Communications on Pure & Applied Analysis, 2019, 18 (2) : 625-641. doi: 10.3934/cpaa.2019031

[17]

Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565

[18]

Wei Dai, Zhao Liu, Guozhen Lu. Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1253-1264. doi: 10.3934/cpaa.2017061

[19]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[20]

Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]