\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic behavior for solutions of some integral equations

Abstract Related Papers Cited by
  • In this paper we study the asymptotic behavior of the positive solutions of the following system of Euler-Lagrange equations of the Hardy-Littlewood-Sobolev type in $R^n$

    $u(x) = \frac{1}{|x|^{\alpha}}\int_{R^n} \frac{v(y)^q}{|y|^{\beta}|x-y|^{\lambda}} dy $,

    $ v(x) = \frac{1}{|x|^{\beta}}\int_{R^n} \frac{u(y)^p}{|y|^{\alpha}|x-y|^{\lambda}}dy. $

    We obtain the growth rate of the solutions around the origin and the decay rate near infinity. Some new cases beyond the work of C. Li and J. Lim [17] are studied here. In particular, we remove some technical restrictions of [17], and thus complete the study of the asymptotic behavior of the solutions for non-negative $\alpha$ and $\beta$.

    Mathematics Subject Classification: Primary: 45E10, 45G05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.doi: doi:10.1002/cpa.3160420304.

    [2]

    W. Chen, C. Jin, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations, Disc. & Cont. Dynamics Sys. S, (2005), 164-173.

    [3]

    W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.doi: doi:10.1215/S0012-7094-91-06325-8.

    [4]

    W. Chen and C. Li, A priori estimates for prescribing scalar curvature equations, Ann. of Math., 145 (1997), 547-564.doi: doi:10.2307/2951844.

    [5]

    W. Chen and C. Li, Regularity of solutions for a system of integral equations, Comm. Pure and Appl. Anal., 4 (2005), 1-8.

    [6]

    W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality, Proc. Amer. Math. Soc., 136 (2008), 955-962.doi: doi:10.1090/S0002-9939-07-09232-5.

    [7]

    W. Chen and C. Li, An integral system and the Lane-Emden conjecture, Disc. & Cont. Dynamics Sys., 24 (2009), 1167-1184.

    [8]

    W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure and Appl. Math., 59 (2006), 330-343.doi: doi:10.1002/cpa.20116.

    [9]

    W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. in Partial Differential Equations, 30 (2005), 59-65.doi: doi:10.1081/PDE-200044445.

    [10]

    W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Disc. & Cont. Dynamics Sys., 12 (2005), 347-354.

    [11]

    A. Chang and P. Yang, On uniqueness of an n-th order differential equation in conformal geometry, Math. Res. Letters, 4 (1997), 1-12.

    [12]

    L. Fraenkel, "An Introduction to Maximum Principles and Symmetry in Elliptic Problems," Cambridge Unversity Press, New York, 2000.

    [13]

    B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$, collected in the book "Mathematical Analysis and Applications," which is vol. 7a of the book series Advances in Mathematics. Supplementary Studies, Academic Press, New York, 1981.

    [14]

    C. Jin and C. Li, Symmetry of solutions to some systems of integral equations, Proc. Amer. Math. Soc., 134 (2006), 1661-1670.doi: doi:10.1090/S0002-9939-05-08411-X.

    [15]

    C. Jin and C. Li, Qualitative analysis of some systems of integral equations, Calc. Var. PDEs, 26 (2006), 447-457.

    [16]

    C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math., 123 (1996), 221-231.

    [17]

    C. Li and J. Lim, The singularity analysis of solutions to some integral equations, Comm. Pure Appl. Anal., 6 (2007), 453-464.doi: doi:10.3934/cpaa.2007.6.453.

    [18]

    C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents, SIAM J. Math. Anal., 40 (2008), 1049-1057.doi: doi:10.1137/080712301.

    [19]

    E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.doi: doi:10.2307/2007032.

    [20]

    E. Lieb and M. Loss, "Analysis," 2nd edition, American Mathematical Society, Rhode Island, 2001.

    [21]

    C. Liu and S. Qiao, Symmetry and monotonicity for a system of integral equations, Comm. Pure Appl. Anal., 8 (2009), 1925-1932.doi: doi:10.3934/cpaa.2009.8.1925.

    [22]

    L. Ma and D. Chen, A Liouville type theorem for an integral system, Comm. Pure Appl. Anal., 5 (2006), 855-859.doi: doi:10.3934/cpaa.2006.5.855.

    [23]

    B. Ou, A Remark on a singular integral equation, Houston J. of Math., 25 (1999), 181-184.

    [24]

    J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.doi: doi:10.1007/BF00250468.

    [25]

    E. M. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces," Princeton University Press, Princeton, 1971.

    [26]

    E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space, J. Math. Mech., 7 (1958), 503-514.

    [27]

    J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.doi: doi:10.1007/s002080050258.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(79) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return