January  2011, 10(1): 225-243. doi: 10.3934/cpaa.2011.10.225

Principal curvature estimates for the level sets of harmonic functions and minimal graphs in $R^3$

1. 

Department of Mathematics, University of Science and Technology of China, Hefei, 230026, Anhui Province, China, China

Received  December 2009 Revised  April 2010 Published  November 2010

We give a sharp lower bound for the principal curvature of the level sets of harmonic functions and minimal graphs defined on convex rings in $R^3$ with homogeneous Dirichlet boundary conditions.
Citation: Xi-Nan Ma, Jiang Ye, Yun-Hua Ye. Principal curvature estimates for the level sets of harmonic functions and minimal graphs in $R^3$. Communications on Pure & Applied Analysis, 2011, 10 (1) : 225-243. doi: 10.3934/cpaa.2011.10.225
References:
[1]

L. V. Ahlfors, "Conformal Invariants: Topics in Geometric Function Theory,", McGraw-Hill Series in Higher Mathematics, (1973), 5.   Google Scholar

[2]

B. J. Bian, P. Guan, X. N. Ma and L. Xu, A microscopic convexity principle for the level sets of solution for nonlinear elliptic partial differential equations,, to appear in Indiana Univ. Math. J.., ().   Google Scholar

[3]

C. Bianchini, M. Longinetti and P. Salani, Quasiconcave solutions to elliptic problems in convex rings,, Indiana Univ. Math. J., 58 (2009), 1565.  doi: doi:10.1512/iumj.2009.58.3539.  Google Scholar

[4]

L. Caffarelli and A. Friedman, Convexity of solutions of some semilinear elliptic equations,, Duke Math. J., 52 (1985), 431.  doi: doi:10.1215/S0012-7094-85-05221-4.  Google Scholar

[5]

L. A. Caffarelli, L. Nirenberg and J. Spruck, Nonlinear second order elliptic equations IV: Starshaped compact Weigarten hypersurfaces,, in, (1985), 1.   Google Scholar

[6]

L. Caffarelli and J. Spruck, Convexity properties of solutions to some classical variational problems,, Comm. Partial Differ. Equations, 7 (1982), 1337.  doi: doi:10.1080/03605308208820254.  Google Scholar

[7]

A. Chang, X. N. Ma and P. Yang, Principal curvature estimates for the convex level sets of semilinear elliptic equations,, Discrete Contin. Dyn. Syst. 28 (2010), (2010), 1151.   Google Scholar

[8]

J. Dolbeault and R. Monneau, Convexity estimates for nonlinear elliptic equations and application to free boundary problems,, Ann. Inst. H. Poincaré Anal. Non Lin$\acutee$aire, 19 (2002), 903.  doi: doi:10.1016/S0294-1449(02)00106-3.  Google Scholar

[9]

R. Gabriel, A result concerning convex level surfaces of 3-dimensional harmonic functions,, J. London Math. Soc., 32 (1957), 286.  doi: doi:10.1112/jlms/s1-32.3.286.  Google Scholar

[10]

J. J. Gergen, Note on the Green function of a star-shaped three dimensional region,, Amer. J. Math., 53 (1931), 746.  doi: doi:10.2307/2371223.  Google Scholar

[11]

S. Gleason and T. Wolff, Lewy's harmonic gradient maps in higher dimensions,, Comm. Partial Diff. Equations, 16 (1991), 1925.  doi: doi:10.1080/03605309108820828.  Google Scholar

[12]

J. Jost, X. N. Ma and Q. Z. Ou, Curvature estimates in dimensions 2 and 3 for the level sets of p-harmonic functions in convex rings,, to appear in Trans. Amer. Math. Soc.., ().   Google Scholar

[13]

B. Kawohl, "Rearrangements and Convexity of Level Sets in PDE,", Lectures Notes in Math., 1150 (1150).   Google Scholar

[14]

N. J. Korevaar, Convexity of level sets for solutions to elliptic ring problems,, Comm. Partial Differ. Equations, 15 (1990), 541.  doi: doi:10.1080/03605309908820698.  Google Scholar

[15]

J. L. Lewis, Capacitary functions in convex rings,, Arch. Rational Mech. Anal., 66 (1977), 201.  doi: doi:10.1007/BF00250671.  Google Scholar

[16]

H. Lewy, On the non-vanishing of the Jacobian of a homeomorphism by harmonic Gradients,, Annals of Math., 88 (1968), 518.  doi: doi:10.2307/1970723.  Google Scholar

[17]

M. Longinetti, Convexity of the level lines of harmonic functions, (Italian) Boll. Un. Mat. Ital. A,, {\bf 6} (1983), 6 (1983), 71.   Google Scholar

[18]

M. Longinetti, On minimal surfaces bounded by two convex curves in parallel planes,, J. Diff. Equations, 67 (1987), 344.  doi: doi:10.1016/0022-0396(87)90131-8.  Google Scholar

[19]

X. N. Ma, Q. Z. Ou and W. Zhang, Gaussian Curvature estimates for the convex level sets of $p$-harmonic functions,, Comm. Pure Appl. Math., (2010), 935.   Google Scholar

[20]

M. Ortel and W. Schneider, Curvature of level curves of harmonic functions,, Canad. Math. Bull., 26 (1983), 399.   Google Scholar

[21]

J. P. Rosay and W. Rudin, A maximum principle for sums of subharmonic functions,and the convexity of level sets,, Michigan Math. J., 36 (1989), 95.  doi: doi:10.1307/mmj/1029003884.  Google Scholar

[22]

M. Shiffman, On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes,, Annals of Math., 63 (1956), 77.  doi: doi:10.2307/1969991.  Google Scholar

[23]

G. Talenti, On functions, whoselines of steepest descent bend proportionally to level lines,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10 (1983), 587.   Google Scholar

show all references

References:
[1]

L. V. Ahlfors, "Conformal Invariants: Topics in Geometric Function Theory,", McGraw-Hill Series in Higher Mathematics, (1973), 5.   Google Scholar

[2]

B. J. Bian, P. Guan, X. N. Ma and L. Xu, A microscopic convexity principle for the level sets of solution for nonlinear elliptic partial differential equations,, to appear in Indiana Univ. Math. J.., ().   Google Scholar

[3]

C. Bianchini, M. Longinetti and P. Salani, Quasiconcave solutions to elliptic problems in convex rings,, Indiana Univ. Math. J., 58 (2009), 1565.  doi: doi:10.1512/iumj.2009.58.3539.  Google Scholar

[4]

L. Caffarelli and A. Friedman, Convexity of solutions of some semilinear elliptic equations,, Duke Math. J., 52 (1985), 431.  doi: doi:10.1215/S0012-7094-85-05221-4.  Google Scholar

[5]

L. A. Caffarelli, L. Nirenberg and J. Spruck, Nonlinear second order elliptic equations IV: Starshaped compact Weigarten hypersurfaces,, in, (1985), 1.   Google Scholar

[6]

L. Caffarelli and J. Spruck, Convexity properties of solutions to some classical variational problems,, Comm. Partial Differ. Equations, 7 (1982), 1337.  doi: doi:10.1080/03605308208820254.  Google Scholar

[7]

A. Chang, X. N. Ma and P. Yang, Principal curvature estimates for the convex level sets of semilinear elliptic equations,, Discrete Contin. Dyn. Syst. 28 (2010), (2010), 1151.   Google Scholar

[8]

J. Dolbeault and R. Monneau, Convexity estimates for nonlinear elliptic equations and application to free boundary problems,, Ann. Inst. H. Poincaré Anal. Non Lin$\acutee$aire, 19 (2002), 903.  doi: doi:10.1016/S0294-1449(02)00106-3.  Google Scholar

[9]

R. Gabriel, A result concerning convex level surfaces of 3-dimensional harmonic functions,, J. London Math. Soc., 32 (1957), 286.  doi: doi:10.1112/jlms/s1-32.3.286.  Google Scholar

[10]

J. J. Gergen, Note on the Green function of a star-shaped three dimensional region,, Amer. J. Math., 53 (1931), 746.  doi: doi:10.2307/2371223.  Google Scholar

[11]

S. Gleason and T. Wolff, Lewy's harmonic gradient maps in higher dimensions,, Comm. Partial Diff. Equations, 16 (1991), 1925.  doi: doi:10.1080/03605309108820828.  Google Scholar

[12]

J. Jost, X. N. Ma and Q. Z. Ou, Curvature estimates in dimensions 2 and 3 for the level sets of p-harmonic functions in convex rings,, to appear in Trans. Amer. Math. Soc.., ().   Google Scholar

[13]

B. Kawohl, "Rearrangements and Convexity of Level Sets in PDE,", Lectures Notes in Math., 1150 (1150).   Google Scholar

[14]

N. J. Korevaar, Convexity of level sets for solutions to elliptic ring problems,, Comm. Partial Differ. Equations, 15 (1990), 541.  doi: doi:10.1080/03605309908820698.  Google Scholar

[15]

J. L. Lewis, Capacitary functions in convex rings,, Arch. Rational Mech. Anal., 66 (1977), 201.  doi: doi:10.1007/BF00250671.  Google Scholar

[16]

H. Lewy, On the non-vanishing of the Jacobian of a homeomorphism by harmonic Gradients,, Annals of Math., 88 (1968), 518.  doi: doi:10.2307/1970723.  Google Scholar

[17]

M. Longinetti, Convexity of the level lines of harmonic functions, (Italian) Boll. Un. Mat. Ital. A,, {\bf 6} (1983), 6 (1983), 71.   Google Scholar

[18]

M. Longinetti, On minimal surfaces bounded by two convex curves in parallel planes,, J. Diff. Equations, 67 (1987), 344.  doi: doi:10.1016/0022-0396(87)90131-8.  Google Scholar

[19]

X. N. Ma, Q. Z. Ou and W. Zhang, Gaussian Curvature estimates for the convex level sets of $p$-harmonic functions,, Comm. Pure Appl. Math., (2010), 935.   Google Scholar

[20]

M. Ortel and W. Schneider, Curvature of level curves of harmonic functions,, Canad. Math. Bull., 26 (1983), 399.   Google Scholar

[21]

J. P. Rosay and W. Rudin, A maximum principle for sums of subharmonic functions,and the convexity of level sets,, Michigan Math. J., 36 (1989), 95.  doi: doi:10.1307/mmj/1029003884.  Google Scholar

[22]

M. Shiffman, On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes,, Annals of Math., 63 (1956), 77.  doi: doi:10.2307/1969991.  Google Scholar

[23]

G. Talenti, On functions, whoselines of steepest descent bend proportionally to level lines,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10 (1983), 587.   Google Scholar

[1]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[2]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[3]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[6]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[7]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[8]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[9]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[10]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]