\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Singular positive solutions for a fourth order elliptic problem in $R$

Abstract Related Papers Cited by
  • In this paper, we consider the following fourth order elliptic problem in $R^N$:

    $\Delta^2 u-c_1\Delta u+c_2 u=u^p+\kappa \sum_{i=1}^m \alpha_i \delta_{a_i}$ in $\mathcal D'(R^N),$

    $ u(x)>0, u(x) \rightarrow 0 $ as $ |x| \rightarrow \infty. $

    We will prove if $0 < \kappa < \kappa^* $ for some $\kappa^*\in (0,\infty)$, then this problem has at least two singular positive solutions.

    Mathematics Subject Classification: Primary: 35J35; Secondary: 35J60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. Aronszajn and K. T. Smith, Theory of Bessel potentials I, Ann. Inst. Fourier, 11 (1961), 385-475.

    [2]

    H. Berestycki and P. L. Lions, Nonlinear scalar field equations I. Existence of a ground state, Arch. Rat. Mech. Anal., 82 (1983), 313-345.

    [3]

    E. Berchio, F. Gazzola and E. Mitidieri, Positivity preserving property for a class of biharmonic elliptic problems, J. Differential Equations, 229 (2006), 1-23.doi: doi:10.1016/j.jde.2006.04.003.

    [4]

    H. Brezis and W. A. Strauss, Semi-linear second order elliptic equations in $L^1$, J. Math. Soc. Japan, 25 (1973), 565-590.doi: doi:10.2969/jmsj/02540565.

    [5]

    J. Chabrowski and João Marcos do Ó, On some fourth-order semilinear elliptic problems in $\R$, Nonlinear Anal., 49 (2002), 861-884.doi: doi:10.1016/S0362-546X(01)00144-4.

    [6]

    C. C. Chen and C. S. Lin, Existence of positive weak solutions with a prescribed singular set of semilinear elliptic equations, J. Geom. Anal., 9 (1999), 221-246.

    [7]

    Y. Deng and Y. Li, Existence of multiple positive solutions for a semilinear elliptic equations, Adv. Differential Equations, 2 (1997), 361-382.

    [8]

    Y. Deng and Y. Li, Existence and bifurcation of the positive solutions for a semilinear equation with critical exponent, J. Differential Equations, 130 (1996), 179-200.doi: doi:10.1006/jdeq.1996.0138.

    [9]

    Z. Djadli, A. Malchiodi and M. Ould Ahmedou, Prescribing a fourth order conformal invariant on the standard sphere I: A perturbation result, Commun. Contemp. Math., 4 (2002), 375-408.doi: doi:10.1142/S0219199702000695.

    [10]

    J. Duoandikoetxea, "Fourier Analysis," Graduate Studies in Math., 29, 2004, AMS. Providence.

    [11]

    D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differentialerential Equations of Second Order," Springer-Verlag, Berlin, 2001.

    [12]

    H. C. Grunau and G. Sweers, The maximum principle and positive principal eigenfunctions for polyharmonic equations, Reaction Differentialusion systems (Trieste, 1995), 163-182 Lect. Notes in Pure and Appl. Math., 194 (1998), Dekker, New York.

    [13]

    L. Jeanjean and K. Tanaka, A positive solution for a nonlinear Schrödinger equation on $R$, Indiana Univ. Math. J., 54 (2005), 443-464.doi: doi:10.1512/iumj.2005.54.2502.

    [14]

    R. A. Johnson, X. Pan and Y. Yi, Singular solutions of the elliptic equation $\Delta u-u+u^p=0$, Ann. Mat. Pura Appl., 166 (1994), 203-225.doi: doi:10.1007/BF01765635.

    [15]

    Y. Naito and T. Sato, Positive solutions for semilinear elliptic equations with singular forcing terms, J. Differential Equations, 235 (2007), 435-483.doi: doi:10.1016/j.jde.2007.01.006.

    [16]

    S. Nazarov and G. Sweers, A hinged plate equation and iterated Dirichlet Laplace operator on domains with concave corners, J. Differential Equations, 233 (2007), 151-180.doi: doi:10.1016/j.jde.2006.09.018.

    [17]

    T. Sato, Positive solutions with weak isolated singularities to some semilinear elliptic equations, Tohoku Math. J., 47 (1995), 55-80.doi: doi:10.2748/tmj/1178225635.

    [18]

    T. SatoPositive solutions to some semilinear elliptic equations with nonnegative forcing terms, preprint.

    [19]

    G. Sweers, No Gidas-Ni-Nirenberg type result for semilinear biharmonic problems, Math. Nachr., 246/247 (2002), 202-206.doi: doi:10.1002/1522-2616(200212)246:1<202::AID-MANA202>3.0.CO;2-G.

    [20]

    T. WatanabeTwo positive solutions for an inhomogeneous scalar field equation, to appear in J. Nonlinear and Convex Analysis.

    [21]

    H. F. Weinberger, "Variational Methods for Eigenvalue Approximation," Regional Conference Series in Applied Mathematics, 15, 1994, SIAM, Pliladelphia.

    [22]

    M. Willem, Minimax theorems, in "Prog. in Nonlinear Differential Equations and Their Applications," 24 (1996) Birkhäuser, Boston.

    [23]

    X. P. Zhu, A perturbation result on positive entire solutions of a semilinear elliptic equation, J. Differential Equations, 92 (1991), 163-178.doi: doi:10.1016/0022-0396(91)90045-B.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(88) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return