-
Previous Article
Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces
- CPAA Home
- This Issue
-
Next Article
Singular positive solutions for a fourth order elliptic problem in $R$
Homoclinic orbits for a class of Hamiltonian systems with superquadratic or asymptotically quadratic potentials
1. | Department of Mathematics, Southeast University, Nanjing 210096 |
$-\ddot{u}(t)+L(t)u(t)=\nabla_u R(t,u(t)), \forall (t,u)\in R\times R^N, $
where the matrix $L(t)\in C(R,R^{N^2})$ and $R(t,u)$ is asymptotically quadratic or super quadratic in $u$ as $|u|\rightarrow\infty$. Under more general assumptions on the matrix $L(t)$, if $R$ is superquadratic and even in $u$, we obtain infinitely many homoclinic orbits. On the other hand, if $R$ is asymptotically quadratic, we also prove the existence and multiplicity of homoclinic orbits for the above system.
References:
[1] |
Y. H. Ding, "Variational Methods for Strongly Indefinite Problems," World Scientific Press, 2008. |
[2] |
Y. H. Ding and B. Ruf, Solutions of a nonliear Dirac equation with external feilds, Arch. Rational Mech. Anal., 190 (2008), 57-82.
doi: doi:10.1007/s00205-008-0163-z. |
[3] |
Y. H. Ding and A. Szulkin, Bound states for semilinear Schrödinger equations with sign-changing potential, Calc. Var. Partial Differential Equations, 29 (2007), 397-419.
doi: doi:10.1007/s00526-006-0071-8. |
[4] |
Y. H. Ding and L. Jeanjean, Homoclinic orbits for non periodic Hamiltonian system, J. Differential Equations, 237 (2007), 473-490.
doi: doi:10.1016/j.jde.2007.03.005. |
[5] |
Y. H. Ding, Existence and multiciplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlin. Anal. T.M.A., 25 (1995), 1095-1113.
doi: doi:10.1016/0362-546X(94)00229-B. |
[6] |
Y. H. Ding and M. Girardi, Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign, Dyn. Sys. and Appl., 2 (1993), 131-145. |
[7] |
Y. H. Ding and M. Girardi, Infinitely many homoclinic orbits of a Hamiltonian system with symmetry, Nonlinear Anal., 38 (1999), 391-415.
doi: doi:10.1016/S0362-546X(98)00204-1. |
[8] |
M. Struwe, "Variational Methods Applications to Nolinear Partial Differential Equations and Hamiltonian Systems," Springer-Verlag, Berlin, 2000. |
[9] |
P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," CBMS Reg. Conf.Ser. in Math. Vol. 65 A. M. S., Providence, 1986. |
[10] |
W. M. Zou and M. Schechter, "Critical Point Theory and its Applications," Springer, 2006. |
[11] |
V. Coti-Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superqudratic potentials, J. Amer. Math. Soc., 4 (1991), 693-742.
doi: doi:10.1090/S0894-0347-1991-1119200-3. |
[12] |
P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonin systems, Math. Z., 206 (1990), 473-499.
doi: doi:10.1007/BF02571356. |
[13] |
W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems, Diff. and Int. Eq., 5 (1992), 1115-1120. |
[14] |
P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh, 114 (1990), 33-38. |
[15] |
Z. Q. Qu and C. L. Tang, Existence of homoclinic solution for the second order Hamiltonian systems, J. Math. Anal. Appl., 291 (2004), 203-213.
doi: doi:10.1016/j.jmaa.2003.10.026. |
[16] |
Y. Lv and C. L. Tang, Existence of even homoclinic solution for the second order Hamiltonian systems, Nonlinea Anal., 67 (2007), 2189-2198.
doi: doi:10.1016/j.na.2006.08.043. |
[17] |
J. Yang and F. B. Zhang, Infinitely many homoclinic orbits for the second order Hamiltonian systems with superquadratic potentials, Nonlinear Anal. Real World Appl., 10 (2009), 1417-1423.
doi: doi:10.1016/j.nonrwa.2008.01.013. |
[18] |
W. M. Zou and S. J. Li, Infinitely many homoclinic orbits for the second order Hamiltonian systems, Applied Mathematics Letter, 16 (2003), 1283-1287.
doi: doi:10.1016/S0893-9659(03)90130-3. |
[19] |
D. E. Edmunds and W. D. Evans, "Spectral Theory and Differential Operators, Clarendon Press," Oxford, 1987. |
[20] |
V. Coti-Zelati, I. Ekeland and E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 228 (1990), 133-160.
doi: doi:10.1007/BF01444526. |
[21] |
Y. H. Ding and S. J. Li, Homoclinic orbits for first order Hamiltonian systems, J. Math. Anal. Appl., 189 (1995), 585-601.
doi: doi:10.1006/jmaa.1995.1037. |
[22] |
H. Hofer and K. Wysocki, First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann., 228 (1990), 483-503.
doi: doi:10.1007/BF01444543. |
[23] |
E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209 (1992), 27-42.
doi: doi:10.1007/BF02570817. |
[24] |
K. Tanaka, Homoclinic orbits in a first order superquadratic Hamiltonian system: Conver- gence of subharmonic orbits, J. Diff. Eq., 94 (1991), 315-339.
doi: doi:10.1016/0022-0396(91)90095-Q. |
[25] |
Y. H. Ding and M. Willem, Homoclinic orbits of a Hamiltonian system, Z. Angew. Math. Phys., 50 (1999), 759-778.
doi: doi:10.1007/s000330050177. |
[26] |
A. Szulkin and W. M. Zou, Homoclinic orbits for asymptotically linear Hamiltonian systems, J. Funct. Anal., 187 (2001), 25-41.
doi: doi:10.1006/jfan.2001.3798. |
[27] |
M. Izydorek and J. Janczewska, Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 219 (2005), 375-389.
doi: doi:10.1016/j.jde.2005.06.029. |
[28] |
M. Izydorek and J. Janczewska, Homoclinic solutions for nonautonomous second order Hamiltonian systems with a coercive potential, J. Math. Anal. Appl., 335 (2007), 1119-1127.
doi: doi:10.1016/j.jmaa.2007.02.038. |
[29] |
M. Schechter and W. M. Zou, Homoclinic orbits for Schrödinger systems, Michigan Math. J., 51 (2005), 59-71. |
[30] |
Y. H. Ding, Multiple homoclinics in a Hamiltonian system with asymptotically or super linear terms, Communications in Contemporary Mathematics, 4 (2006), 453-480.
doi: doi:10.1142/S0219199706002192. |
show all references
References:
[1] |
Y. H. Ding, "Variational Methods for Strongly Indefinite Problems," World Scientific Press, 2008. |
[2] |
Y. H. Ding and B. Ruf, Solutions of a nonliear Dirac equation with external feilds, Arch. Rational Mech. Anal., 190 (2008), 57-82.
doi: doi:10.1007/s00205-008-0163-z. |
[3] |
Y. H. Ding and A. Szulkin, Bound states for semilinear Schrödinger equations with sign-changing potential, Calc. Var. Partial Differential Equations, 29 (2007), 397-419.
doi: doi:10.1007/s00526-006-0071-8. |
[4] |
Y. H. Ding and L. Jeanjean, Homoclinic orbits for non periodic Hamiltonian system, J. Differential Equations, 237 (2007), 473-490.
doi: doi:10.1016/j.jde.2007.03.005. |
[5] |
Y. H. Ding, Existence and multiciplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlin. Anal. T.M.A., 25 (1995), 1095-1113.
doi: doi:10.1016/0362-546X(94)00229-B. |
[6] |
Y. H. Ding and M. Girardi, Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign, Dyn. Sys. and Appl., 2 (1993), 131-145. |
[7] |
Y. H. Ding and M. Girardi, Infinitely many homoclinic orbits of a Hamiltonian system with symmetry, Nonlinear Anal., 38 (1999), 391-415.
doi: doi:10.1016/S0362-546X(98)00204-1. |
[8] |
M. Struwe, "Variational Methods Applications to Nolinear Partial Differential Equations and Hamiltonian Systems," Springer-Verlag, Berlin, 2000. |
[9] |
P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," CBMS Reg. Conf.Ser. in Math. Vol. 65 A. M. S., Providence, 1986. |
[10] |
W. M. Zou and M. Schechter, "Critical Point Theory and its Applications," Springer, 2006. |
[11] |
V. Coti-Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superqudratic potentials, J. Amer. Math. Soc., 4 (1991), 693-742.
doi: doi:10.1090/S0894-0347-1991-1119200-3. |
[12] |
P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonin systems, Math. Z., 206 (1990), 473-499.
doi: doi:10.1007/BF02571356. |
[13] |
W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems, Diff. and Int. Eq., 5 (1992), 1115-1120. |
[14] |
P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh, 114 (1990), 33-38. |
[15] |
Z. Q. Qu and C. L. Tang, Existence of homoclinic solution for the second order Hamiltonian systems, J. Math. Anal. Appl., 291 (2004), 203-213.
doi: doi:10.1016/j.jmaa.2003.10.026. |
[16] |
Y. Lv and C. L. Tang, Existence of even homoclinic solution for the second order Hamiltonian systems, Nonlinea Anal., 67 (2007), 2189-2198.
doi: doi:10.1016/j.na.2006.08.043. |
[17] |
J. Yang and F. B. Zhang, Infinitely many homoclinic orbits for the second order Hamiltonian systems with superquadratic potentials, Nonlinear Anal. Real World Appl., 10 (2009), 1417-1423.
doi: doi:10.1016/j.nonrwa.2008.01.013. |
[18] |
W. M. Zou and S. J. Li, Infinitely many homoclinic orbits for the second order Hamiltonian systems, Applied Mathematics Letter, 16 (2003), 1283-1287.
doi: doi:10.1016/S0893-9659(03)90130-3. |
[19] |
D. E. Edmunds and W. D. Evans, "Spectral Theory and Differential Operators, Clarendon Press," Oxford, 1987. |
[20] |
V. Coti-Zelati, I. Ekeland and E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 228 (1990), 133-160.
doi: doi:10.1007/BF01444526. |
[21] |
Y. H. Ding and S. J. Li, Homoclinic orbits for first order Hamiltonian systems, J. Math. Anal. Appl., 189 (1995), 585-601.
doi: doi:10.1006/jmaa.1995.1037. |
[22] |
H. Hofer and K. Wysocki, First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann., 228 (1990), 483-503.
doi: doi:10.1007/BF01444543. |
[23] |
E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209 (1992), 27-42.
doi: doi:10.1007/BF02570817. |
[24] |
K. Tanaka, Homoclinic orbits in a first order superquadratic Hamiltonian system: Conver- gence of subharmonic orbits, J. Diff. Eq., 94 (1991), 315-339.
doi: doi:10.1016/0022-0396(91)90095-Q. |
[25] |
Y. H. Ding and M. Willem, Homoclinic orbits of a Hamiltonian system, Z. Angew. Math. Phys., 50 (1999), 759-778.
doi: doi:10.1007/s000330050177. |
[26] |
A. Szulkin and W. M. Zou, Homoclinic orbits for asymptotically linear Hamiltonian systems, J. Funct. Anal., 187 (2001), 25-41.
doi: doi:10.1006/jfan.2001.3798. |
[27] |
M. Izydorek and J. Janczewska, Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 219 (2005), 375-389.
doi: doi:10.1016/j.jde.2005.06.029. |
[28] |
M. Izydorek and J. Janczewska, Homoclinic solutions for nonautonomous second order Hamiltonian systems with a coercive potential, J. Math. Anal. Appl., 335 (2007), 1119-1127.
doi: doi:10.1016/j.jmaa.2007.02.038. |
[29] |
M. Schechter and W. M. Zou, Homoclinic orbits for Schrödinger systems, Michigan Math. J., 51 (2005), 59-71. |
[30] |
Y. H. Ding, Multiple homoclinics in a Hamiltonian system with asymptotically or super linear terms, Communications in Contemporary Mathematics, 4 (2006), 453-480.
doi: doi:10.1142/S0219199706002192. |
[1] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Homoclinic orbits for a class of asymptotically quadratic Hamiltonian systems. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2855-2878. doi: 10.3934/cpaa.2019128 |
[2] |
Addolorata Salvatore. Multiple homoclinic orbits for a class of second order perturbed Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 778-787. doi: 10.3934/proc.2003.2003.778 |
[3] |
Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1929-1940. doi: 10.3934/cpaa.2015.14.1929 |
[4] |
Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807 |
[5] |
Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions. Communications on Pure and Applied Analysis, 2019, 18 (1) : 425-434. doi: 10.3934/cpaa.2019021 |
[6] |
Cyril Joel Batkam. Homoclinic orbits of first-order superquadratic Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3353-3369. doi: 10.3934/dcds.2014.34.3353 |
[7] |
Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1 |
[8] |
Martín Sambarino, José L. Vieitez. On $C^1$-persistently expansive homoclinic classes. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 465-481. doi: 10.3934/dcds.2006.14.465 |
[9] |
Keonhee Lee, Manseob Lee. Hyperbolicity of $C^1$-stably expansive homoclinic classes. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1133-1145. doi: 10.3934/dcds.2010.27.1133 |
[10] |
Mark Pollicott. Closed orbits and homology for $C^2$-flows. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 529-534. doi: 10.3934/dcds.1999.5.529 |
[11] |
Amadeu Delshams, Pere Gutiérrez. Exponentially small splitting for whiskered tori in Hamiltonian systems: continuation of transverse homoclinic orbits. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 757-783. doi: 10.3934/dcds.2004.11.757 |
[12] |
Li-Li Wan, Chun-Lei Tang. Existence and multiplicity of homoclinic orbits for second order Hamiltonian systems without (AR) condition. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 255-271. doi: 10.3934/dcdsb.2011.15.255 |
[13] |
Jun Wang, Junxiang Xu, Fubao Zhang. Homoclinic orbits for superlinear Hamiltonian systems without Ambrosetti-Rabinowitz growth condition. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1241-1257. doi: 10.3934/dcds.2010.27.1241 |
[14] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[15] |
Tiphaine Jézéquel, Patrick Bernard, Eric Lombardi. Homoclinic orbits with many loops near a $0^2 i\omega$ resonant fixed point of Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3153-3225. doi: 10.3934/dcds.2016.36.3153 |
[16] |
Søren Eilers. C *-algebras associated to dynamical systems. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 177-192. doi: 10.3934/dcds.2006.15.177 |
[17] |
Shaobo Gan, Kazuhiro Sakai, Lan Wen. $C^1$ -stably weakly shadowing homoclinic classes admit dominated splittings. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 205-216. doi: 10.3934/dcds.2010.27.205 |
[18] |
Katsutoshi Shinohara. On the index problem of $C^1$-generic wild homoclinic classes in dimension three. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 913-940. doi: 10.3934/dcds.2011.31.913 |
[19] |
Viktor L. Ginzburg and Basak Z. Gurel. On the construction of a $C^2$-counterexample to the Hamiltonian Seifert Conjecture in $\mathbb{R}^4$. Electronic Research Announcements, 2002, 8: 11-19. |
[20] |
Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]